485 lines
17 KiB
Python
485 lines
17 KiB
Python
import base64
|
|
import copy
|
|
import io
|
|
import json
|
|
import os
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
import numpy as np
|
|
import openai
|
|
import requests
|
|
from PIL import Image
|
|
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
popen_launch_server,
|
|
)
|
|
|
|
# image
|
|
IMAGE_MAN_IRONING_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/man_ironing_on_back_of_suv.png"
|
|
IMAGE_SGL_LOGO_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/sgl_logo.png"
|
|
|
|
# video
|
|
VIDEO_JOBS_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/videos/jobs_presenting_ipod.mp4"
|
|
|
|
# audio
|
|
AUDIO_TRUMP_SPEECH_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/Trump_WEF_2018_10s.mp3"
|
|
AUDIO_BIRD_SONG_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/bird_song.mp3"
|
|
|
|
|
|
class TestOpenAIVisionServer(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = "lmms-lab/llava-onevision-qwen2-0.5b-ov"
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.api_key = "sk-123456"
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
api_key=cls.api_key,
|
|
)
|
|
cls.base_url += "/v1"
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def get_request_kwargs(self):
|
|
return {}
|
|
|
|
def test_single_image_chat_completion(self):
|
|
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
response = client.chat.completions.create(
|
|
model="default",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "Describe this image in a very short sentence.",
|
|
},
|
|
],
|
|
},
|
|
],
|
|
temperature=0,
|
|
**(self.get_request_kwargs()),
|
|
)
|
|
|
|
assert response.choices[0].message.role == "assistant"
|
|
text = response.choices[0].message.content
|
|
assert isinstance(text, str)
|
|
# `driver` is for gemma-3-it
|
|
assert (
|
|
"man" in text or "person" or "driver" in text
|
|
), f"text: {text}, should contain man, person or driver"
|
|
assert (
|
|
"cab" in text
|
|
or "taxi" in text
|
|
or "SUV" in text
|
|
or "vehicle" in text
|
|
or "car" in text
|
|
), f"text: {text}, should contain cab, taxi, SUV, vehicle or car"
|
|
# MiniCPMO fails to recognize `iron`, but `hanging`
|
|
assert (
|
|
"iron" in text or "hang" in text or "cloth" in text or "holding" in text
|
|
), f"text: {text}, should contain iron, hang, cloth or holding"
|
|
assert response.id
|
|
assert response.created
|
|
assert response.usage.prompt_tokens > 0
|
|
assert response.usage.completion_tokens > 0
|
|
assert response.usage.total_tokens > 0
|
|
|
|
def test_multi_turn_chat_completion(self):
|
|
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
response = client.chat.completions.create(
|
|
model="default",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "Describe this image in a very short sentence.",
|
|
},
|
|
],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "There is a man at the back of a yellow cab ironing his clothes.",
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "Repeat your previous answer."}
|
|
],
|
|
},
|
|
],
|
|
temperature=0,
|
|
**(self.get_request_kwargs()),
|
|
)
|
|
|
|
assert response.choices[0].message.role == "assistant"
|
|
text = response.choices[0].message.content
|
|
assert isinstance(text, str)
|
|
assert (
|
|
"man" in text or "cab" in text
|
|
), f"text: {text}, should contain man or cab"
|
|
assert response.id
|
|
assert response.created
|
|
assert response.usage.prompt_tokens > 0
|
|
assert response.usage.completion_tokens > 0
|
|
assert response.usage.total_tokens > 0
|
|
|
|
def test_multi_images_chat_completion(self):
|
|
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
response = client.chat.completions.create(
|
|
model="default",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
|
"modalities": "multi-images",
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": IMAGE_SGL_LOGO_URL},
|
|
"modalities": "multi-images",
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "I have two very different images. They are not related at all. "
|
|
"Please describe the first image in one sentence, and then describe the second image in another sentence.",
|
|
},
|
|
],
|
|
},
|
|
],
|
|
temperature=0,
|
|
**(self.get_request_kwargs()),
|
|
)
|
|
|
|
assert response.choices[0].message.role == "assistant"
|
|
text = response.choices[0].message.content
|
|
assert isinstance(text, str)
|
|
print("-" * 30)
|
|
print(f"Multi images response:\n{text}")
|
|
print("-" * 30)
|
|
assert (
|
|
"man" in text or "cab" in text or "SUV" in text or "taxi" in text
|
|
), f"text: {text}, should contain man, cab, SUV or taxi"
|
|
assert (
|
|
"logo" in text or '"S"' in text or "SG" in text
|
|
), f"text: {text}, should contain logo, S or SG"
|
|
assert response.id
|
|
assert response.created
|
|
assert response.usage.prompt_tokens > 0
|
|
assert response.usage.completion_tokens > 0
|
|
assert response.usage.total_tokens > 0
|
|
|
|
def prepare_video_messages(self, video_path):
|
|
# the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
|
|
# the size of the video embeds differs from the `modality` argument when preprocessed
|
|
|
|
# We import decord here to avoid a strange Segmentation fault (core dumped) issue.
|
|
# The following import order will cause Segmentation fault.
|
|
# import decord
|
|
# from transformers import AutoTokenizer
|
|
from decord import VideoReader, cpu
|
|
|
|
max_frames_num = 20
|
|
vr = VideoReader(video_path, ctx=cpu(0))
|
|
total_frame_num = len(vr)
|
|
uniform_sampled_frames = np.linspace(
|
|
0, total_frame_num - 1, max_frames_num, dtype=int
|
|
)
|
|
frame_idx = uniform_sampled_frames.tolist()
|
|
frames = vr.get_batch(frame_idx).asnumpy()
|
|
|
|
base64_frames = []
|
|
for frame in frames:
|
|
pil_img = Image.fromarray(frame)
|
|
buff = io.BytesIO()
|
|
pil_img.save(buff, format="JPEG")
|
|
base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
|
|
base64_frames.append(base64_str)
|
|
|
|
messages = [{"role": "user", "content": []}]
|
|
frame_format = {
|
|
"type": "image_url",
|
|
"image_url": {"url": "data:image/jpeg;base64,{}"},
|
|
"modalities": "video",
|
|
}
|
|
|
|
for base64_frame in base64_frames:
|
|
frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
|
|
base64_frame
|
|
)
|
|
messages[0]["content"].append(frame_format.copy())
|
|
|
|
prompt = {"type": "text", "text": "Please describe the video in detail."}
|
|
messages[0]["content"].append(prompt)
|
|
|
|
return messages
|
|
|
|
def prepare_video_messages_video_direct(self, video_path):
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": f"video:{video_path}"},
|
|
"modalities": "video",
|
|
},
|
|
{"type": "text", "text": "Please describe the video in detail."},
|
|
],
|
|
},
|
|
]
|
|
return messages
|
|
|
|
def get_or_download_file(self, url: str) -> str:
|
|
cache_dir = os.path.expanduser("~/.cache")
|
|
if url is None:
|
|
raise ValueError()
|
|
file_name = url.split("/")[-1]
|
|
file_path = os.path.join(cache_dir, file_name)
|
|
os.makedirs(cache_dir, exist_ok=True)
|
|
|
|
if not os.path.exists(file_path):
|
|
response = requests.get(url)
|
|
response.raise_for_status()
|
|
|
|
with open(file_path, "wb") as f:
|
|
f.write(response.content)
|
|
return file_path
|
|
|
|
def test_video_chat_completion(self):
|
|
url = VIDEO_JOBS_URL
|
|
file_path = self.get_or_download_file(url)
|
|
|
|
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
# messages = self.prepare_video_messages_video_direct(file_path)
|
|
messages = self.prepare_video_messages(file_path)
|
|
|
|
response = client.chat.completions.create(
|
|
model="default",
|
|
messages=messages,
|
|
temperature=0,
|
|
max_tokens=1024,
|
|
stream=False,
|
|
**(self.get_request_kwargs()),
|
|
)
|
|
|
|
video_response = response.choices[0].message.content
|
|
|
|
print("-" * 30)
|
|
print(f"Video response:\n{video_response}")
|
|
print("-" * 30)
|
|
|
|
# Add assertions to validate the video response
|
|
assert (
|
|
"iPod" in video_response or "device" in video_response
|
|
), f"video_response: {video_response}, should contain 'iPod' or 'device'"
|
|
assert (
|
|
"man" in video_response
|
|
or "person" in video_response
|
|
or "individual" in video_response
|
|
or "speaker" in video_response
|
|
), f"video_response: {video_response}, should either have 'man' in video_response, or 'person' in video_response, or 'individual' in video_response or 'speaker' in video_response"
|
|
assert (
|
|
"present" in video_response
|
|
or "examine" in video_response
|
|
or "display" in video_response
|
|
or "hold" in video_response
|
|
), f"video_response: {video_response}, should contain 'present', 'examine', 'display', or 'hold'"
|
|
assert (
|
|
"black" in video_response or "dark" in video_response
|
|
), f"video_response: {video_response}, should contain 'black' or 'dark'"
|
|
self.assertIsNotNone(video_response)
|
|
self.assertGreater(len(video_response), 0)
|
|
|
|
def test_regex(self):
|
|
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
regex = (
|
|
r"""\{"""
|
|
+ r""""color":"[\w]+","""
|
|
+ r""""number_of_cars":[\d]+"""
|
|
+ r"""\}"""
|
|
)
|
|
|
|
extra_kwargs = self.get_request_kwargs()
|
|
extra_kwargs.setdefault("extra_body", {})["regex"] = regex
|
|
|
|
response = client.chat.completions.create(
|
|
model="default",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "Describe this image in the JSON format.",
|
|
},
|
|
],
|
|
},
|
|
],
|
|
temperature=0,
|
|
**extra_kwargs,
|
|
)
|
|
text = response.choices[0].message.content
|
|
|
|
try:
|
|
js_obj = json.loads(text)
|
|
except (TypeError, json.decoder.JSONDecodeError):
|
|
print("JSONDecodeError", text)
|
|
raise
|
|
assert isinstance(js_obj["color"], str)
|
|
assert isinstance(js_obj["number_of_cars"], int)
|
|
|
|
def run_decode_with_image(self, image_id):
|
|
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
content = []
|
|
if image_id == 0:
|
|
content.append(
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
|
}
|
|
)
|
|
elif image_id == 1:
|
|
content.append(
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": IMAGE_SGL_LOGO_URL},
|
|
}
|
|
)
|
|
else:
|
|
pass
|
|
|
|
content.append(
|
|
{
|
|
"type": "text",
|
|
"text": "Describe this image in a very short sentence.",
|
|
}
|
|
)
|
|
|
|
response = client.chat.completions.create(
|
|
model="default",
|
|
messages=[
|
|
{"role": "user", "content": content},
|
|
],
|
|
temperature=0,
|
|
**(self.get_request_kwargs()),
|
|
)
|
|
|
|
assert response.choices[0].message.role == "assistant"
|
|
text = response.choices[0].message.content
|
|
assert isinstance(text, str)
|
|
|
|
def test_mixed_batch(self):
|
|
image_ids = [0, 1, 2] * 4
|
|
with ThreadPoolExecutor(4) as executor:
|
|
list(executor.map(self.run_decode_with_image, image_ids))
|
|
|
|
def prepare_audio_messages(self, prompt, audio_file_name):
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "audio_url",
|
|
"audio_url": {"url": f"{audio_file_name}"},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": prompt,
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
return messages
|
|
|
|
def get_audio_response(self, url: str, prompt, category):
|
|
audio_file_path = self.get_or_download_file(url)
|
|
client = openai.Client(api_key="sk-123456", base_url=self.base_url)
|
|
|
|
messages = self.prepare_audio_messages(prompt, audio_file_path)
|
|
|
|
response = client.chat.completions.create(
|
|
model="default",
|
|
messages=messages,
|
|
temperature=0,
|
|
max_tokens=128,
|
|
stream=False,
|
|
**(self.get_request_kwargs()),
|
|
)
|
|
|
|
audio_response = response.choices[0].message.content
|
|
|
|
print("-" * 30)
|
|
print(f"audio {category} response:\n{audio_response}")
|
|
print("-" * 30)
|
|
|
|
audio_response = audio_response.lower()
|
|
|
|
self.assertIsNotNone(audio_response)
|
|
self.assertGreater(len(audio_response), 0)
|
|
|
|
return audio_response
|
|
|
|
def _test_audio_speech_completion(self):
|
|
# a fragment of Trump's speech
|
|
audio_response = self.get_audio_response(
|
|
AUDIO_TRUMP_SPEECH_URL,
|
|
"I have an audio sample. Please repeat the person's words",
|
|
category="speech",
|
|
)
|
|
assert "thank you" in audio_response
|
|
assert "it's a privilege to be here" in audio_response
|
|
assert "leader" in audio_response
|
|
assert "science" in audio_response
|
|
assert "art" in audio_response
|
|
|
|
def _test_audio_ambient_completion(self):
|
|
# bird song
|
|
audio_response = self.get_audio_response(
|
|
AUDIO_BIRD_SONG_URL,
|
|
"Please listen to the audio snippet carefully and transcribe the content.",
|
|
"ambient",
|
|
)
|
|
assert "bird" in audio_response
|
|
|
|
def test_audio_chat_completion(self):
|
|
pass
|