151 lines
4.9 KiB
Python
151 lines
4.9 KiB
Python
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/_custom_ops.py
|
|
import logging
|
|
import os
|
|
from typing import List, Tuple
|
|
|
|
import torch
|
|
import torch.library
|
|
|
|
from sglang.srt.utils import get_bool_env_var, is_hip, is_hpu
|
|
|
|
logger = logging.getLogger(__name__)
|
|
use_vllm_custom_allreduce = get_bool_env_var(
|
|
"USE_VLLM_CUSTOM_ALLREDUCE", default="false"
|
|
)
|
|
|
|
if not is_hpu():
|
|
# ROCm does not use vllm custom allreduce
|
|
if use_vllm_custom_allreduce and not is_hip():
|
|
try:
|
|
import vllm._C
|
|
except ImportError as e:
|
|
logger.warning("Failed to import from vllm._C with %r", e)
|
|
else:
|
|
try:
|
|
import sgl_kernel
|
|
except ImportError as e:
|
|
logger.warning("Failed to import from custom_ar with %r", e)
|
|
|
|
|
|
if use_vllm_custom_allreduce and not is_hip():
|
|
# vLLM custom allreduce
|
|
def init_custom_ar(
|
|
ipc_tensors: List[torch.Tensor],
|
|
rank_data: torch.Tensor,
|
|
rank: int,
|
|
full_nvlink: bool,
|
|
) -> int:
|
|
return torch.ops._C_custom_ar.init_custom_ar(
|
|
ipc_tensors, rank_data, rank, full_nvlink
|
|
)
|
|
|
|
def all_reduce(
|
|
fa: int,
|
|
inp: torch.Tensor,
|
|
out: torch.Tensor,
|
|
reg_buffer: int,
|
|
reg_buffer_sz_bytes: int,
|
|
) -> None:
|
|
torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes)
|
|
|
|
def dispose(fa: int) -> None:
|
|
torch.ops._C_custom_ar.dispose(fa)
|
|
|
|
def meta_size() -> int:
|
|
return torch.ops._C_custom_ar.meta_size()
|
|
|
|
def register_buffer(fa: int, ipc_tensors: List[int]) -> None:
|
|
return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
|
|
|
|
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
|
|
return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
|
|
|
|
def register_graph_buffers(
|
|
fa: int, handles: List[List[int]], offsets: List[List[int]]
|
|
) -> None:
|
|
torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
|
|
|
|
else:
|
|
if is_hip():
|
|
# ROCM custom allreduce
|
|
|
|
def init_custom_ar(
|
|
meta: torch.Tensor,
|
|
rank_data: torch.Tensor,
|
|
handles: List[str],
|
|
offsets: List[int],
|
|
rank: int,
|
|
full_nvlink: bool,
|
|
) -> int:
|
|
return sgl_kernel.allreduce.init_custom_ar(
|
|
meta, rank_data, handles, offsets, rank, full_nvlink
|
|
)
|
|
|
|
def all_reduce_reg(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
|
|
sgl_kernel.allreduce.all_reduce_reg(fa, inp, out)
|
|
|
|
def all_reduce_unreg(
|
|
fa: int, inp: torch.Tensor, reg_buffer: torch.Tensor, out: torch.Tensor
|
|
) -> None:
|
|
sgl_kernel.allreduce.all_reduce_unreg(fa, inp, reg_buffer, out)
|
|
|
|
def dispose(fa: int) -> None:
|
|
sgl_kernel.allreduce.dispose(fa)
|
|
|
|
def meta_size() -> int:
|
|
return sgl_kernel.allreduce.meta_size()
|
|
|
|
def register_buffer(
|
|
fa: int, t: torch.Tensor, handles: List[str], offsets: List[int]
|
|
) -> None:
|
|
return sgl_kernel.allreduce.register_buffer(fa, t, handles, offsets)
|
|
|
|
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[torch.Tensor, List[int]]:
|
|
return sgl_kernel.allreduce.get_graph_buffer_ipc_meta(fa)
|
|
|
|
def register_graph_buffers(
|
|
fa: int, handles: List[str], offsets: List[List[int]]
|
|
) -> None:
|
|
sgl_kernel.allreduce.register_graph_buffers(fa, handles, offsets)
|
|
|
|
def allocate_meta_buffer(size: int) -> torch.Tensor:
|
|
return sgl_kernel.allreduce.allocate_meta_buffer(size)
|
|
|
|
def get_meta_buffer_ipc_handle(inp: torch.Tensor) -> torch.Tensor:
|
|
return sgl_kernel.allreduce.get_meta_buffer_ipc_handle(inp)
|
|
|
|
else:
|
|
# TRTLLM custom allreduce
|
|
def init_custom_ar(
|
|
rank_id: int,
|
|
world_size: int,
|
|
rank_data_base: torch.Tensor,
|
|
buffers: List[int],
|
|
tmp_result_buffers: List[int],
|
|
barrier_in: List[int],
|
|
barrier_out: List[int],
|
|
) -> int:
|
|
return sgl_kernel.init_custom_reduce(
|
|
rank_id,
|
|
world_size,
|
|
rank_data_base,
|
|
buffers,
|
|
tmp_result_buffers,
|
|
barrier_in,
|
|
barrier_out,
|
|
)
|
|
|
|
def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
|
|
sgl_kernel.custom_reduce(fa, inp, out)
|
|
|
|
def dispose(fa: int) -> None:
|
|
sgl_kernel.custom_dispose(fa)
|
|
|
|
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
|
|
return sgl_kernel.get_graph_buffer_ipc_meta(fa)
|
|
|
|
def register_graph_buffers(
|
|
fa: int, handles: List[List[int]], offsets: List[List[int]]
|
|
) -> None:
|
|
sgl_kernel.register_graph_buffers(fa, handles, offsets)
|