sglang0.4.5.post1/python/sglang/srt/constrained/llguidance_backend.py

152 lines
5.6 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Constrained decoding with llguidance backend."""
import json
import os
from typing import List, Optional, Tuple
import llguidance
import llguidance.hf
import llguidance.torch
import torch
from llguidance.gbnf_to_lark import any_to_lark
from sglang.srt.constrained.base_grammar_backend import (
BaseGrammarBackend,
BaseGrammarObject,
)
class GuidanceGrammar(BaseGrammarObject):
def __init__(
self, llguidance_tokenizer: llguidance.LLTokenizer, serialized_grammar: str
):
self.llguidance_tokenizer = llguidance_tokenizer
self.serialized_grammar = serialized_grammar
# TODO: add support for fast-forward tokens in the future
self.ll_interpreter = llguidance.LLInterpreter(
self.llguidance_tokenizer,
self.serialized_grammar,
enable_backtrack=False,
enable_ff_tokens=False,
log_level=int(os.environ.get("LLGUIDANCE_LOG_LEVEL", "1")),
)
self.pending_ff_tokens: list[int] = []
self.finished = False
self.bitmask = None
def try_jump_forward(self, tokenizer) -> Optional[Tuple[List[int], str]]:
if len(self.pending_ff_tokens) > 0:
s = self.llguidance_tokenizer.decode_str(self.pending_ff_tokens)
ff_tokens = self.pending_ff_tokens
self.pending_ff_tokens = []
return (ff_tokens, s)
return None
def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]:
return "", -1
def jump_and_retokenize(
self, old_output_ids: List[int], new_output_ids: List[int], next_state: int
):
pass
def accept_token(self, token: int):
backtrack, ff_tokens = self.ll_interpreter.commit_token(token)
if len(ff_tokens) > 0 and backtrack == 0:
# first token is last generated token
ff_tokens = ff_tokens[1:]
self.pending_ff_tokens.extend(ff_tokens)
def fill_vocab_mask(self, vocab_mask: torch.Tensor, idx: int) -> None:
if len(self.pending_ff_tokens) > 0:
# if we have pending fast-forward tokens,
# just return them immediately
ff_token = self.pending_ff_tokens.pop(0)
vocab_mask[idx, :] = 0
vocab_mask[idx, ff_token // 32] = 1 << (ff_token % 32)
return
if self.ll_interpreter.has_pending_stop():
self.finished = True
llguidance.torch.fill_next_token_bitmask(self.ll_interpreter, vocab_mask, idx)
def allocate_vocab_mask(
self, vocab_size: int, batch_size: int, device
) -> torch.Tensor:
if self.bitmask is None or self.bitmask.shape[0] < batch_size:
# only create bitmask when batch gets larger
self.bitmask = llguidance.torch.allocate_token_bitmask(
batch_size, self.llguidance_tokenizer.vocab_size
)
bitmask = self.bitmask
else:
bitmask = self.bitmask[:batch_size]
return bitmask
@staticmethod
def move_vocab_mask(vocab_mask: torch.Tensor, device) -> torch.Tensor:
return vocab_mask.to(device, non_blocking=True)
@staticmethod
def apply_vocab_mask(logits: torch.Tensor, vocab_mask: torch.Tensor) -> None:
llguidance.torch.apply_token_bitmask_inplace(logits, vocab_mask)
def copy(self):
return GuidanceGrammar(
llguidance_tokenizer=self.llguidance_tokenizer,
serialized_grammar=self.serialized_grammar,
)
class GuidanceBackend(BaseGrammarBackend):
def __init__(self, tokenizer, whitespace_pattern: Optional[str] = None):
super().__init__()
self.tokenizer = tokenizer
self.whitespace_flexible = (
True if whitespace_pattern == "whitespace_flexible" else False
)
self.llguidance_tokenizer = llguidance.hf.from_tokenizer(self.tokenizer, None)
def _from_serialized(self, serialized_grammar) -> GuidanceGrammar:
return GuidanceGrammar(
llguidance_tokenizer=self.llguidance_tokenizer,
serialized_grammar=serialized_grammar,
)
def dispatch_json(self, key_string: str) -> GuidanceGrammar:
json_schema = key_string
compiler = llguidance.JsonCompiler(whitespace_flexible=self.whitespace_flexible)
serialized_grammar = compiler.compile(json_schema)
return self._from_serialized(serialized_grammar)
def dispatch_regex(self, key_string: str) -> GuidanceGrammar:
compiler = llguidance.RegexCompiler()
serialized_grammar = compiler.compile(regex=key_string)
return self._from_serialized(serialized_grammar)
def dispatch_ebnf(self, key_string: str) -> GuidanceGrammar:
compiler = llguidance.LarkCompiler()
serialized_grammar = compiler.compile(any_to_lark(key_string))
return self._from_serialized(serialized_grammar)
def dispatch_structural_tag(self, key_string: str):
return super().dispatch_structural_tag(key_string)