175 lines
5.9 KiB
Python
175 lines
5.9 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Fused operators for activation layers."""
|
|
|
|
import logging
|
|
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from sglang.srt.utils import is_cuda_available
|
|
|
|
_is_cuda = is_cuda_available()
|
|
|
|
if _is_cuda:
|
|
from sgl_kernel import gelu_and_mul, gelu_tanh_and_mul, silu_and_mul
|
|
|
|
from sglang.srt.custom_op import CustomOp
|
|
from sglang.srt.distributed import (
|
|
divide,
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.utils import set_weight_attrs
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SiluAndMul(CustomOp):
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
return F.silu(x[..., :d]) * x[..., d:]
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
output_shape = x.shape[:-1] + (d,)
|
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
|
silu_and_mul(x, out)
|
|
return out
|
|
|
|
|
|
class GeluAndMul(CustomOp):
|
|
def __init__(self, approximate="tanh"):
|
|
super().__init__()
|
|
self.approximate = approximate
|
|
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:]
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
d = x.shape[-1] // 2
|
|
output_shape = x.shape[:-1] + (d,)
|
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
|
if self.approximate == "tanh":
|
|
gelu_tanh_and_mul(x, out)
|
|
elif self.approximate == "none":
|
|
gelu_and_mul(x, out)
|
|
else:
|
|
raise RuntimeError("GeluAndMul only support tanh or none")
|
|
return out
|
|
|
|
|
|
class NewGELU(CustomOp):
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
c = math.sqrt(2.0 / math.pi)
|
|
return 0.5 * x * (1.0 + torch.tanh(c * (x + 0.044715 * torch.pow(x, 3.0))))
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
# TODO: Implement the CUDA kernel for NewGELU in sgl-kernel
|
|
return self.forward_native(x)
|
|
|
|
|
|
class QuickGELU(CustomOp):
|
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
|
# TODO(zhyncs): Implement the CUDA kernel for QuickGELU in sgl-kernel
|
|
return self.forward_native(x)
|
|
|
|
|
|
class ScaledActivation(nn.Module):
|
|
"""An activation function with post-scale parameters.
|
|
|
|
This is used for some quantization methods like AWQ.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
act_module: nn.Module,
|
|
intermediate_size: int,
|
|
input_is_parallel: bool = True,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
):
|
|
super().__init__()
|
|
self.act = act_module
|
|
self.input_is_parallel = input_is_parallel
|
|
if input_is_parallel:
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
intermediate_size_per_partition = divide(intermediate_size, tp_size)
|
|
else:
|
|
intermediate_size_per_partition = intermediate_size
|
|
if params_dtype is None:
|
|
params_dtype = torch.get_default_dtype()
|
|
self.scales = nn.Parameter(
|
|
torch.empty(intermediate_size_per_partition, dtype=params_dtype)
|
|
)
|
|
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.act(x) / self.scales
|
|
|
|
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
|
|
param_data = param.data
|
|
if self.input_is_parallel:
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
shard_size = param_data.shape[0]
|
|
start_idx = tp_rank * shard_size
|
|
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
|
|
assert param_data.shape == loaded_weight.shape
|
|
param_data.copy_(loaded_weight)
|
|
|
|
|
|
_ACTIVATION_REGISTRY = {
|
|
"gelu": nn.GELU(),
|
|
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
|
|
}
|
|
|
|
|
|
def get_act_fn(
|
|
act_fn_name: str,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
intermediate_size: Optional[int] = None,
|
|
input_is_parallel: bool = True,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
) -> nn.Module:
|
|
"""Get an activation function by name."""
|
|
act_fn_name = act_fn_name.lower()
|
|
if act_fn_name not in _ACTIVATION_REGISTRY:
|
|
raise ValueError(f"Activation function {act_fn_name!r} is not supported.")
|
|
|
|
act_fn = _ACTIVATION_REGISTRY[act_fn_name]
|
|
if quant_config is not None and act_fn_name in quant_config.get_scaled_act_names():
|
|
if intermediate_size is None:
|
|
raise ValueError(
|
|
"intermediate_size must be specified for scaled "
|
|
"activation functions."
|
|
)
|
|
return ScaledActivation(
|
|
act_fn, intermediate_size, input_is_parallel, params_dtype
|
|
)
|
|
return act_fn
|
|
|
|
|
|
if not _is_cuda:
|
|
logger.info(
|
|
"sgl-kernel is not available on Non-NV platforms. Fallback to other kernel libraries."
|
|
)
|
|
from vllm.model_executor.layers.activation import GeluAndMul, SiluAndMul
|