71 lines
2.2 KiB
Python
71 lines
2.2 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Radix attention."""
|
|
|
|
from torch import nn
|
|
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
|
|
|
|
class RadixAttention(nn.Module):
|
|
"""
|
|
The attention layer implementation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_dim: int,
|
|
scaling: float,
|
|
num_kv_heads: int,
|
|
layer_id: int,
|
|
logit_cap: float = 0.0,
|
|
v_head_dim: int = -1,
|
|
sliding_window_size: int = -1,
|
|
is_cross_attention: bool = False,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_q_head_num = num_heads
|
|
self.tp_k_head_num = num_kv_heads
|
|
self.tp_v_head_num = num_kv_heads
|
|
self.head_dim = head_dim
|
|
self.qk_head_dim = head_dim
|
|
self.v_head_dim = v_head_dim if v_head_dim != -1 else head_dim
|
|
self.scaling = scaling
|
|
self.layer_id = layer_id
|
|
self.logit_cap = logit_cap
|
|
self.sliding_window_size = sliding_window_size or -1
|
|
self.is_cross_attention = is_cross_attention
|
|
self.k_scale = None
|
|
self.v_scale = None
|
|
|
|
def forward(
|
|
self,
|
|
q,
|
|
k,
|
|
v,
|
|
forward_batch: ForwardBatch,
|
|
save_kv_cache: bool = True,
|
|
):
|
|
if k is not None:
|
|
# For cross-layer sharing, kv can be None
|
|
assert v is not None
|
|
k = k.view(-1, self.tp_k_head_num, self.qk_head_dim)
|
|
v = v.view(-1, self.tp_v_head_num, self.v_head_dim)
|
|
|
|
return forward_batch.attn_backend.forward(
|
|
q, k, v, self, forward_batch, save_kv_cache
|
|
)
|