231 lines
8.6 KiB
Python
231 lines
8.6 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""A tensor parallel worker."""
|
|
|
|
import logging
|
|
import threading
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
|
|
from sglang.srt.configs.model_config import ModelConfig
|
|
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
|
|
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
|
|
from sglang.srt.managers.io_struct import (
|
|
GetWeightsByNameReqInput,
|
|
InitWeightsUpdateGroupReqInput,
|
|
UpdateWeightFromDiskReqInput,
|
|
UpdateWeightsFromDistributedReqInput,
|
|
UpdateWeightsFromTensorReqInput,
|
|
)
|
|
from sglang.srt.managers.schedule_batch import ModelWorkerBatch, global_server_args_dict
|
|
from sglang.srt.mem_cache.memory_pool import ReqToTokenPool, TokenToKVPoolAllocator
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.model_executor.model_runner import ModelRunner
|
|
from sglang.srt.server_args import ServerArgs
|
|
from sglang.srt.utils import MultiprocessingSerializer, broadcast_pyobj, set_random_seed
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TpModelWorker:
|
|
"""A tensor parallel model worker."""
|
|
|
|
def __init__(
|
|
self,
|
|
server_args: ServerArgs,
|
|
gpu_id: int,
|
|
tp_rank: int,
|
|
dp_rank: Optional[int],
|
|
nccl_port: int,
|
|
is_draft_worker: bool = False,
|
|
req_to_token_pool: Optional[ReqToTokenPool] = None,
|
|
token_to_kv_pool_allocator: Optional[TokenToKVPoolAllocator] = None,
|
|
):
|
|
# Parse args
|
|
self.tp_rank = tp_rank
|
|
|
|
# Init model and tokenizer
|
|
self.model_config = ModelConfig(
|
|
(
|
|
server_args.model_path
|
|
if not is_draft_worker
|
|
else server_args.speculative_draft_model_path
|
|
),
|
|
trust_remote_code=server_args.trust_remote_code,
|
|
revision=server_args.revision,
|
|
context_length=server_args.context_length,
|
|
model_override_args=server_args.json_model_override_args,
|
|
is_embedding=server_args.is_embedding,
|
|
dtype=server_args.dtype,
|
|
quantization=server_args.quantization,
|
|
)
|
|
self.model_runner = ModelRunner(
|
|
model_config=self.model_config,
|
|
mem_fraction_static=server_args.mem_fraction_static,
|
|
gpu_id=gpu_id,
|
|
tp_rank=tp_rank,
|
|
tp_size=server_args.tp_size,
|
|
nccl_port=nccl_port,
|
|
server_args=server_args,
|
|
is_draft_worker=is_draft_worker,
|
|
req_to_token_pool=req_to_token_pool,
|
|
token_to_kv_pool_allocator=token_to_kv_pool_allocator,
|
|
)
|
|
if server_args.skip_tokenizer_init:
|
|
self.tokenizer = self.processor = None
|
|
else:
|
|
if self.model_config.is_multimodal:
|
|
self.processor = get_processor(
|
|
server_args.tokenizer_path,
|
|
tokenizer_mode=server_args.tokenizer_mode,
|
|
trust_remote_code=server_args.trust_remote_code,
|
|
revision=server_args.revision,
|
|
)
|
|
self.tokenizer = self.processor.tokenizer
|
|
else:
|
|
self.tokenizer = get_tokenizer(
|
|
server_args.tokenizer_path,
|
|
tokenizer_mode=server_args.tokenizer_mode,
|
|
trust_remote_code=server_args.trust_remote_code,
|
|
revision=server_args.revision,
|
|
)
|
|
self.device = self.model_runner.device
|
|
|
|
# Profile number of tokens
|
|
self.max_total_num_tokens = self.model_runner.max_total_num_tokens
|
|
self.max_prefill_tokens = server_args.max_prefill_tokens
|
|
self.max_running_requests = min(
|
|
(
|
|
self.max_total_num_tokens // 2
|
|
if server_args.max_running_requests is None
|
|
else server_args.max_running_requests
|
|
// (server_args.dp_size if server_args.enable_dp_attention else 1)
|
|
),
|
|
self.model_runner.req_to_token_pool.size,
|
|
)
|
|
self.max_req_len = min(
|
|
self.model_config.context_len - 1,
|
|
self.max_total_num_tokens - 1,
|
|
)
|
|
self.max_req_input_len = self.max_req_len - 5
|
|
assert (
|
|
self.max_req_len > 0 and self.max_req_input_len > 0
|
|
), "Memory pool size is too small"
|
|
|
|
# Sync random seed across TP workers
|
|
self.random_seed = broadcast_pyobj(
|
|
[server_args.random_seed],
|
|
self.tp_rank,
|
|
self.model_runner.tp_group.cpu_group,
|
|
)[0]
|
|
set_random_seed(self.random_seed)
|
|
|
|
# A reference make this class has the same member as TpModelWorkerClient
|
|
self.worker = self
|
|
|
|
def get_worker_info(self):
|
|
return (
|
|
self.max_total_num_tokens,
|
|
self.max_prefill_tokens,
|
|
self.max_running_requests,
|
|
self.max_req_len,
|
|
self.max_req_input_len,
|
|
self.random_seed,
|
|
self.device,
|
|
global_server_args_dict,
|
|
self.model_runner.req_to_token_pool.size,
|
|
self.model_runner.req_to_token_pool.max_context_len,
|
|
self.model_runner.token_to_kv_pool.size,
|
|
)
|
|
|
|
def get_pad_input_ids_func(self):
|
|
return getattr(self.model_runner.model, "pad_input_ids", None)
|
|
|
|
def get_tp_cpu_group(self):
|
|
return self.model_runner.tp_group.cpu_group
|
|
|
|
def get_attention_tp_cpu_group(self):
|
|
return self.model_runner.attention_tp_group.cpu_group
|
|
|
|
def get_memory_pool(self):
|
|
return (
|
|
self.model_runner.req_to_token_pool,
|
|
self.model_runner.token_to_kv_pool_allocator,
|
|
)
|
|
|
|
def forward_batch_generation(
|
|
self,
|
|
model_worker_batch: ModelWorkerBatch,
|
|
launch_done: Optional[threading.Event] = None,
|
|
skip_sample: bool = False,
|
|
) -> Tuple[LogitsProcessorOutput, Optional[torch.Tensor]]:
|
|
forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner)
|
|
logits_output = self.model_runner.forward(forward_batch)
|
|
if launch_done:
|
|
launch_done.set()
|
|
|
|
if skip_sample:
|
|
next_token_ids = None
|
|
else:
|
|
next_token_ids = self.model_runner.sample(logits_output, model_worker_batch)
|
|
|
|
return logits_output, next_token_ids
|
|
|
|
def forward_batch_embedding(self, model_worker_batch: ModelWorkerBatch):
|
|
forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner)
|
|
logits_output = self.model_runner.forward(forward_batch)
|
|
embeddings = logits_output.embeddings
|
|
return embeddings
|
|
|
|
def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
|
|
success, message = self.model_runner.update_weights_from_disk(
|
|
recv_req.model_path, recv_req.load_format
|
|
)
|
|
return success, message
|
|
|
|
def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
|
|
success, message = self.model_runner.init_weights_update_group(
|
|
recv_req.master_address,
|
|
recv_req.master_port,
|
|
recv_req.rank_offset,
|
|
recv_req.world_size,
|
|
recv_req.group_name,
|
|
recv_req.backend,
|
|
)
|
|
return success, message
|
|
|
|
def update_weights_from_distributed(
|
|
self, recv_req: UpdateWeightsFromDistributedReqInput
|
|
):
|
|
success, message = self.model_runner.update_weights_from_distributed(
|
|
recv_req.name, recv_req.dtype, recv_req.shape
|
|
)
|
|
return success, message
|
|
|
|
def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
|
|
success, message = self.model_runner.update_weights_from_tensor(
|
|
named_tensors=MultiprocessingSerializer.deserialize(
|
|
recv_req.serialized_named_tensors[self.tp_rank]
|
|
),
|
|
load_format=recv_req.load_format,
|
|
)
|
|
return success, message
|
|
|
|
def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
|
|
parameter = self.model_runner.get_weights_by_name(
|
|
recv_req.name, recv_req.truncate_size
|
|
)
|
|
return parameter
|