sglang0.4.5.post1/python/sglang/srt/models/gpt_bigcode.py

304 lines
10 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Adapted from:
# https://github.com/vllm-project/vllm/blob/07eb6f19f3b0ee9f7adf6eb689607028aa40bfd5/vllm/model_executor/models/gpt_bigcode.py
"""Inference-only GPTBigCode model compatible with HuggingFace weights."""
from typing import Iterable, Optional, Tuple
import torch
from torch import nn
from transformers import GPTBigCodeConfig
from sglang.srt.distributed import get_tensor_model_parallel_world_size
from sglang.srt.layers.activation import get_act_fn
from sglang.srt.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix
class GPTBigCodeAttention(nn.Module):
def __init__(
self,
layer_id: int,
config: GPTBigCodeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
total_num_heads = config.num_attention_heads
self.tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert total_num_heads % self.tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // self.tensor_model_parallel_world_size
self.head_dim = self.hidden_size // total_num_heads
self.scale = self.head_dim**-0.5
self.multi_query = config.multi_query
if self.multi_query:
total_num_kv_heads = 1
self.num_kv_heads = 1
else:
total_num_kv_heads = total_num_heads
self.num_kv_heads = self.num_heads
self.kv_dim = self.head_dim * self.num_kv_heads
self.c_attn = QKVParallelLinear(
self.hidden_size,
self.head_dim,
total_num_heads,
total_num_kv_heads,
bias=True,
quant_config=quant_config,
prefix=add_prefix("c_attn", prefix),
)
self.c_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("c_proj", prefix),
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
scaling=self.scale,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
def forward(
self,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.split(
[
self.hidden_size // self.tensor_model_parallel_world_size,
self.kv_dim,
self.kv_dim,
],
dim=-1,
)
attn_output = self.attn(q, k, v, forward_batch)
attn_output, _ = self.c_proj(attn_output)
return attn_output
class GPTBigMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPTBigCodeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("c_fc", prefix),
)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("c_proj", prefix),
)
self.act = get_act_fn(
config.activation_function, quant_config, intermediate_size
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class GPTBigCodeBlock(nn.Module):
def __init__(
self,
layer_id: int,
config: GPTBigCodeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPTBigCodeAttention(
layer_id, config, quant_config, prefix=add_prefix("attn", prefix)
)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPTBigMLP(
inner_dim, config, quant_config, prefix=add_prefix("mlp", prefix)
)
def forward(
self,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
hidden_states=hidden_states, forward_batch=forward_batch
)
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states
class GPTBigCodeModel(nn.Module):
def __init__(
self,
config: GPTBigCodeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
assert not config.add_cross_attention
self.embed_dim = config.hidden_size
lora_vocab = 0
self.vocab_size = config.vocab_size + lora_vocab
self.wte = VocabParallelEmbedding(
self.vocab_size,
self.embed_dim,
org_num_embeddings=config.vocab_size,
prefix=add_prefix("wte", prefix),
)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.h = nn.ModuleList(
[
GPTBigCodeBlock(
i, config, quant_config, prefix=add_prefix(f"h.{i}", prefix)
)
for i in range(config.num_hidden_layers)
]
)
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
for i in range(len(self.h)):
layer = self.h[i]
hidden_states = layer(hidden_states, forward_batch)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPTBigCodeForCausalLM(nn.Module):
packed_modules_mapping = {"c_attn": ["c_attn"]}
supported_lora_modules = ["c_fc", "c_proj", "wte", "c_attn"]
embedding_modules = {
"wte": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = []
def __init__(
self,
config: GPTBigCodeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.quant_config = quant_config
self.transformer = GPTBigCodeModel(
config, quant_config, prefix=add_prefix("transformer", prefix)
)
self.lm_head = self.transformer.wte
self.unpadded_vocab_size = config.vocab_size
self.logits_processor = LogitsProcessor(config)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, forward_batch)
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "lm_head.weight" in name:
continue
if ".attn.bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
# TODO (@robertgshaw2-neuralmagic): move to fp8 linear method
if "c_attn.input_scale" in name or "c_attn.weight_scale" in name:
weight_loader(param, loaded_weight, "q")
weight_loader(param, loaded_weight, "k")
weight_loader(param, loaded_weight, "v")
else:
weight_loader(param, loaded_weight)
EntryClass = GPTBigCodeForCausalLM