sglang0.4.5.post1/python/sglang/srt/models/qwen2_5_vl.py

658 lines
24 KiB
Python

# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-VL model compatible with HuggingFace weights."""
import logging
from functools import lru_cache, partial
from typing import Iterable, List, Optional, Tuple, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import AutoModel, Qwen2VLConfig
from transformers.activations import ACT2FN
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm
from transformers.models.qwen2_5_vl import Qwen2_5_VLProcessor
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
Qwen2_5_VLConfig,
Qwen2_5_VLVisionConfig,
)
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
Qwen2_5_VLForConditionalGeneration,
)
from sglang.srt.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from sglang.srt.hf_transformers_utils import get_processor
from sglang.srt.layers.attention.vision import VisionAttention
from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternTokenPairs,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalInputs
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2 import Qwen2Model
from sglang.srt.models.qwen2_vl import Qwen2VLVideoInputs
from sglang.srt.utils import add_prefix
logger = logging.getLogger(__name__)
class Qwen2_5_VLMLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int = None,
bias: bool = True,
hidden_act="silu",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.gate_proj = ColumnParallelLinear(
in_features,
hidden_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("gate_proj", prefix),
)
self.up_proj = ColumnParallelLinear(
in_features,
hidden_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("up_proj", prefix),
)
self.down_proj = RowParallelLinear(
hidden_features,
in_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
)
self.act = ACT2FN[hidden_act]
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_parallel_gate, _ = self.gate_proj(x)
x_parallel_gate = self.act(x_parallel_gate)
x_parallel_up, _ = self.up_proj(x)
x_parallel = x_parallel_gate * x_parallel_up
x, _ = self.down_proj(x_parallel)
return x
class Qwen2_5_VisionBlock(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
num_heads: int,
hidden_act="silu",
norm_layer: Type[nn.Module] = None,
attn_implementation: Optional[str] = "sdpa",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.norm1 = Qwen2RMSNorm(dim, eps=1e-6)
self.norm2 = Qwen2RMSNorm(dim, eps=1e-6)
if attn_implementation == "sdpa":
use_context_forward = False
softmax_in_single_precision = False
flatten_batch = True
elif attn_implementation == "flash_attention_2":
softmax_in_single_precision = False
use_context_forward = True
flatten_batch = True
elif attn_implementation == "eager":
softmax_in_single_precision = True
use_context_forward = False
flatten_batch = True
self.attn = VisionAttention(
embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
use_qkv_parallel=False,
use_context_forward=use_context_forward,
softmax_in_single_precision=softmax_in_single_precision,
flatten_batch=flatten_batch,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
self.mlp = Qwen2_5_VLMLP(
dim,
intermediate_dim,
hidden_act=hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.norm1(x)
hidden_states = rearrange(hidden_states, "s b ... -> b s ...")
attn = self.attn(
hidden_states,
cu_seqlens=cu_seqlens,
position_embeddings=position_embeddings,
)
attn = rearrange(attn, "b s ... -> s b ...")
x = x + attn
norm2 = self.norm2(x)
mlp = self.mlp(norm2)
x = x + mlp
return x
class Qwen2_5_VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_chans: int = 3,
embed_dim: int = 1152,
) -> None:
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = nn.Conv3d(
in_chans, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
target_dtype = self.proj.weight.dtype
L, C = x.shape
x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size)
x = self.proj(x.to(dtype=target_dtype)).view(L, self.embed_dim)
return x
class Qwen2_5_VisionPatchMerger(nn.Module):
def __init__(
self,
dim: int,
context_dim: int,
spatial_merge_size: int = 2,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6)
self.mlp = nn.ModuleList(
[
ColumnParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("mlp.0", prefix),
),
nn.GELU(),
RowParallelLinear(
self.hidden_size,
dim,
bias=True,
quant_config=quant_config,
prefix=add_prefix("mlp.2", prefix),
),
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x)
x = x.view(-1, self.hidden_size)
mlp_fc1, mlp_act, mlp_fc2 = self.mlp
x_parallel, _ = mlp_fc1(x)
x_parallel = mlp_act(x_parallel)
out, _ = mlp_fc2(x_parallel)
return out
class Qwen2_5_VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class Qwen2_5_VisionTransformer(nn.Module):
def __init__(
self,
vision_config: Qwen2_5_VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
patch_size: int = vision_config.patch_size
temporal_patch_size: int = vision_config.temporal_patch_size
spatial_merge_size: int = vision_config.spatial_merge_size
self.spatial_merge_size = spatial_merge_size
self.spatial_merge_unit: int = spatial_merge_size * spatial_merge_size
in_chans: int = vision_config.in_channels
hidden_size: int = vision_config.hidden_size
depth: int = vision_config.depth
num_heads: int = vision_config.num_heads
self.fullatt_block_indexes = vision_config.fullatt_block_indexes
self.window_size = vision_config.window_size
self.patch_size = vision_config.patch_size
mlp_hidden_size: int = vision_config.intermediate_size
self.patch_embed = Qwen2_5_VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_chans=in_chans,
embed_dim=hidden_size,
)
norm_layer = partial(nn.LayerNorm, eps=norm_eps)
head_dim = hidden_size // num_heads
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[
Qwen2_5_VisionBlock(
dim=hidden_size,
intermediate_dim=mlp_hidden_size,
num_heads=num_heads,
hidden_act=vision_config.hidden_act,
norm_layer=norm_layer,
attn_implementation="sdpa",
quant_config=quant_config,
prefix=add_prefix(f"blocks.{i}", prefix),
)
for i in range(depth)
]
)
self.merger = Qwen2_5_VisionPatchMerger(
dim=vision_config.out_hidden_size,
context_dim=hidden_size,
spatial_merge_size=spatial_merge_size,
quant_config=quant_config,
prefix=add_prefix("merger", prefix),
)
def get_window_index(self, grid_thw):
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = (
self.window_size // self.spatial_merge_size // self.patch_size
)
window_index: list = []
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.spatial_merge_size,
grid_w // self.spatial_merge_size,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
grid_t, llm_grid_h, llm_grid_w
)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = (
seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
)
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
@property
def dtype(self) -> torch.dtype:
return self.blocks[0].mlp.gate_proj.weight.dtype
@property
def device(self) -> torch.device:
return self.blocks[0].mlp.gate_proj.weight.device
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
pos_ids = []
for i in range(grid_thw.size(0)):
t, h, w = grid_thw[i].tolist()
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def forward(
self,
x: torch.Tensor,
grid_thw: torch.Tensor,
) -> torch.Tensor:
# patchify
x = x.to(device=self.device, dtype=self.dtype)
x = self.patch_embed(x)
# compute position embedding
rotary_pos_emb = self.rot_pos_emb(grid_thw)
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=x.device,
dtype=torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = x.size()
x = x.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
x = x[window_index, :, :]
x = x.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
# compute cu_seqlens
cu_seqlens = torch.cat(
[
torch.tensor([0], device=grid_thw.device),
(grid_thw[:, 0] * grid_thw[:, 1] * grid_thw[:, 2]).cumsum(dim=0),
]
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
# transformers
x = x.unsqueeze(1)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
x = blk(
x, cu_seqlens=cu_seqlens_now, position_embeddings=position_embeddings
)
# adapter
x = self.merger(x)
reverse_indices = torch.argsort(window_index)
x = x[reverse_indices, :]
return x
cached_get_processor = lru_cache(get_processor)
class Qwen2_5_VLForConditionalGeneration(nn.Module):
def __init__(
self,
config: Qwen2VLConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.visual = Qwen2_5_VisionTransformer(
config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
# NOTE: Qwen2-VL vision encoder does not support any
# quantization method now.
quant_config=None,
prefix=add_prefix("visual", prefix),
)
self.model = Qwen2Model(
config,
quant_config,
prefix=add_prefix("model", prefix),
)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
# Get all special token IDs
im_start_id: int = image_inputs.im_start_id
im_end_id: int = image_inputs.im_end_id
media_token_pairs = [(im_start_id, im_end_id)]
pattern = MultiModalityDataPaddingPatternTokenPairs(media_token_pairs)
return pattern.pad_input_tokens(input_ids, image_inputs)
def get_image_feature(self, image_input: MultimodalInputs) -> torch.Tensor:
pixel_values = image_input.pixel_values.type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=image_input.image_grid_thws)
return image_embeds
def _process_video_input(self, video_input: Qwen2VLVideoInputs) -> torch.Tensor:
pixel_values_videos = video_input["pixel_values_videos"].type(self.visual.dtype)
video_embeds = self.visual(
pixel_values_videos, grid_thw=video_input["video_grid_thw"]
)
return video_embeds
def get_input_embeddings(self):
return self.model.embed_tokens
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
get_embedding: bool = False,
):
"""Run forward pass for Qwen2_5-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2-VL
opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
(Use input_metadata.mrope_positions to replace it)
"""
if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope":
positions = forward_batch.mrope_positions
if not (
forward_batch.forward_mode.is_decode()
or not forward_batch.contains_image_inputs()
):
if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope":
assert positions.ndim == 2 and positions.size(0) == 3, (
"multimodal section rotary embedding requires "
f"(3, seq_len) positions, but got {positions.size()}"
)
inputs_embeds = general_mm_embed_routine(
input_ids=input_ids,
forward_batch=forward_batch,
embed_tokens=self.get_input_embeddings(),
mm_data_embedding_func=self.get_image_feature,
)
hidden_states = self.model(
input_ids=None,
positions=positions,
forward_batch=forward_batch,
input_embeds=inputs_embeds,
)
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
else:
return self.pooler(hidden_states, forward_batch)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "up_proj", 1),
("gate_up_proj", "gate_proj", 0),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if "visual" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if "visual" in name and "qkv.weight" in name:
visual_num_heads = self.config.vision_config.num_heads
visual_embed_dim = self.config.vision_config.hidden_size
head_size = visual_embed_dim // visual_num_heads
loaded_weight = loaded_weight.view(
3, visual_num_heads, head_size, visual_embed_dim
)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1, visual_embed_dim)
elif "visual" in name and "qkv.bias" in name:
visual_num_heads = self.config.vision_config.num_heads
visual_embed_dim = self.config.vision_config.hidden_size
head_size = visual_embed_dim // visual_num_heads
loaded_weight = loaded_weight.view(3, visual_num_heads, head_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1)
if "visual" in name:
# adapt to VisionAttention
name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
try:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
except KeyError:
print(params_dict.keys())
raise
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
EntryClass = [Qwen2_5_VLForConditionalGeneration]