sglang0.4.5.post1/python/sglang/srt/speculative/build_eagle_tree.py

389 lines
11 KiB
Python

# NOTE: Please run this file to make sure the test cases are correct.
from typing import List
import torch
from sglang.srt.utils import is_cuda_available, is_hip
if is_cuda_available() or is_hip():
from sgl_kernel import (
build_tree_kernel_efficient as sgl_build_tree_kernel_efficient,
)
def build_tree_kernel_efficient_preprocess(
verified_id: torch.Tensor,
score_list: List[torch.Tensor],
token_list: List[torch.Tensor],
parents_list: List[torch.Tensor],
num_verify_tokens: int,
):
score_list = torch.cat(score_list, dim=1).flatten(
1
) # b, n, topk; n= 1 + (num_steps-1) * self.topk
ss_token_list = torch.cat(
token_list, dim=1
) # b, (self.topk + (num_steps-1) * self.topk)
top_scores = torch.topk(score_list, num_verify_tokens - 1, dim=-1)
top_scores_index = top_scores.indices
top_scores_index = torch.sort(top_scores_index).values
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
draft_tokens = torch.cat((verified_id.unsqueeze(1), draft_tokens), dim=1).flatten()
if len(parents_list) > 1:
parent_list = torch.cat(parents_list[:-1], dim=1)
else:
batch_size = parents_list[0].shape[0]
parent_list = torch.empty(batch_size, 0, device=parents_list[0].device)
return parent_list, top_scores_index, draft_tokens
def build_tree_kernel_efficient(
verified_id: torch.Tensor,
score_list: List[torch.Tensor],
token_list: List[torch.Tensor],
parents_list: List[torch.Tensor],
seq_lens: torch.Tensor,
seq_lens_sum: int,
topk: int,
spec_steps: int,
num_verify_tokens: int,
):
parent_list, top_scores_index, draft_tokens = (
build_tree_kernel_efficient_preprocess(
verified_id,
score_list,
token_list,
parents_list,
num_verify_tokens,
)
)
# seq_lens_sum == sum(seq_lens); seq_lens: sequence length without draft tokens
bs = seq_lens.numel()
device = seq_lens.device
# e.g. for bs=1, tree_mask: num_draft_token, seq_lens_sum + num_draft_token (flattened)
# where each row indicates the attending pattern of each draft token
# TODO: make them torch.empty and fuse them into `sgl_build_tree_kernel`
tree_mask = torch.full(
(
seq_lens_sum * num_verify_tokens
+ num_verify_tokens * num_verify_tokens * bs,
),
True,
device=device,
)
retrive_index = torch.full(
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
retrive_next_token = torch.full(
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
retrive_next_sibling = torch.full(
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
)
# position: where each token belongs to
# e.g. if depth of each draft token is [0, 1, 1, 2] and the prompt length is 7
# then, positions = [7, 8, 8, 9]
positions = torch.empty((bs * num_verify_tokens,), device=device, dtype=torch.long)
sgl_build_tree_kernel_efficient(
parent_list,
top_scores_index,
seq_lens.to(torch.int32),
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
topk,
spec_steps,
num_verify_tokens,
)
return (
tree_mask,
positions,
retrive_index,
retrive_next_token,
retrive_next_sibling,
draft_tokens,
)
def test_build_tree_kernel_efficient():
verified_id = torch.tensor([29974, 13], device="cuda", dtype=torch.int32)
score_list = [
torch.tensor(
[
[[7.1127e-01, 2.8292e-01, 2.2995e-03, 1.7357e-03]],
[[9.7476e-01, 2.2219e-02, 6.5031e-04, 1.3212e-04]],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.9142e-01, 1.2863e-02, 1.6873e-03, 1.1871e-03],
[2.4787e-01, 1.8818e-02, 1.4204e-02, 9.2235e-04],
[2.2971e-03, 1.6700e-06, 1.8737e-07, 8.3146e-08],
[1.2771e-03, 2.4374e-04, 1.7832e-04, 1.1947e-05],
],
[
[8.4832e-02, 6.6068e-02, 5.8304e-02, 5.7851e-02],
[2.3616e-03, 1.1243e-03, 5.4368e-04, 2.7768e-04],
[2.5286e-04, 1.5578e-04, 2.8817e-05, 1.2888e-05],
[1.2834e-04, 2.5417e-06, 1.1279e-06, 1.6088e-08],
],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.6438e-01, 2.6997e-02, 2.4236e-05, 4.0821e-06],
[2.4402e-01, 2.8409e-03, 5.0935e-04, 2.9022e-04],
[1.6178e-02, 2.0567e-03, 4.5892e-04, 3.0034e-05],
[1.3023e-02, 5.0497e-04, 3.6371e-04, 8.7750e-05],
],
[
[2.3263e-02, 2.0054e-02, 9.3990e-03, 2.7783e-03],
[6.4156e-02, 5.5506e-04, 1.0429e-04, 9.7211e-05],
[4.9950e-02, 5.0630e-03, 9.0068e-04, 3.3656e-04],
[7.5817e-03, 8.5731e-04, 6.9972e-04, 6.0793e-04],
],
],
dtype=torch.float32,
device="cuda",
),
torch.tensor(
[
[
[6.6420e-01, 1.0525e-04, 6.5864e-05, 1.2253e-06],
[1.3019e-01, 1.0461e-01, 5.2083e-03, 1.6777e-03],
[2.0103e-02, 6.7335e-03, 1.2625e-04, 1.0364e-05],
[1.5142e-02, 7.0819e-04, 9.6595e-05, 8.7951e-05],
],
[
[5.8608e-02, 1.8840e-03, 7.8535e-04, 4.4400e-04],
[1.2185e-02, 2.0684e-03, 1.7418e-03, 1.4327e-03],
[6.2455e-03, 6.1487e-03, 2.6862e-03, 1.8034e-03],
[1.8590e-03, 1.6151e-03, 1.2481e-03, 3.6038e-04],
],
],
dtype=torch.float32,
device="cuda",
),
]
token_list = [
torch.tensor(
[[29896, 29906, 29900, 29945], [13, 2, 29871, 28956]],
dtype=torch.int64,
device="cuda",
),
torch.tensor(
[
[
29889,
29974,
29945,
29900,
29974,
29922,
29930,
29958,
29889,
29974,
29930,
29945,
29974,
29922,
29930,
29958,
],
[
22550,
4136,
16492,
8439,
29871,
2,
3001,
13,
2,
13,
29906,
29946,
2,
13,
29871,
259,
],
],
device="cuda",
),
torch.tensor(
[
[
29946,
29945,
29953,
29906,
29896,
29945,
29900,
29906,
29896,
29945,
29906,
29953,
29896,
29945,
29906,
29946,
],
[
29871,
2,
29901,
29889,
29871,
2,
395,
259,
29901,
29871,
2,
29889,
3001,
1234,
7146,
2186,
],
],
device="cuda",
),
torch.tensor(
[
[
29946,
29974,
29945,
29930,
29889,
29922,
29974,
29930,
29974,
29946,
29930,
29922,
29889,
29974,
29945,
29922,
],
[
29941,
29906,
2,
29946,
29871,
450,
319,
14990,
29946,
29941,
2,
29906,
29871,
2,
3001,
13,
],
],
device="cuda",
),
]
parents_list = [
torch.tensor(
[[-1, 0, 1, 2, 3], [-1, 0, 1, 2, 3]], dtype=torch.int64, device="cuda"
),
torch.tensor([[4, 8, 9, 10], [4, 5, 6, 7]], dtype=torch.int64, device="cuda"),
torch.tensor(
[[20, 24, 21, 28], [24, 28, 20, 21]], dtype=torch.int64, device="cuda"
),
torch.tensor(
[[36, 40, 41, 44], [36, 40, 44, 45]], dtype=torch.int64, device="cuda"
),
]
seq_lens = torch.tensor([5, 10], dtype=torch.int64, device="cuda")
topk = 4
depth = 4
num_draft_token = 8
(
tree_mask,
position,
retrive_index,
retrive_next_token,
retrive_next_sibling,
draft_tokens,
) = build_tree_kernel_efficient(
verified_id=verified_id,
score_list=score_list,
token_list=token_list,
parents_list=parents_list,
seq_lens=seq_lens,
seq_lens_sum=torch.sum(seq_lens).item(),
topk=topk,
spec_steps=depth,
num_verify_tokens=num_draft_token,
)
first_rank_print("=========== build tree kernel efficient ==========")
# first_rank_print(f"{tree_mask=}", flush=True)
first_rank_print(f"{position=}", flush=True)
first_rank_print(f"{retrive_index=}", flush=True)
first_rank_print(f"{retrive_next_token=}", flush=True)
first_rank_print(f"{retrive_next_sibling=}", flush=True)
first_rank_print(f"{draft_tokens=}", flush=True)
assert position.tolist() == [5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 14]
assert retrive_index.tolist() == [
[0, 1, 2, 3, 4, 5, 6, 7],
[8, 9, 10, 11, 12, 13, 14, 15],
]
assert retrive_next_token.tolist() == [
[1, 3, 4, 5, 6, 7, -1, -1],
[1, 2, -1, 6, -1, -1, 7, -1],
]
assert retrive_next_sibling.tolist() == [
[-1, 2, -1, -1, -1, -1, -1, -1],
[-1, -1, 3, 4, 5, -1, -1, -1],
]
assert draft_tokens.tolist() == [
29974,
29896,
29906,
29889,
29974,
29946,
29896,
29946,
13,
13,
22550,
4136,
16492,
8439,
29871,
29941,
]
if __name__ == "__main__":
test_build_tree_kernel_efficient()