sglang0.4.5.post1/test/srt/test_bench_serving.py

205 lines
7.0 KiB
Python

import unittest
from sglang.test.test_utils import (
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_TEST,
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_MOE_MODEL_NAME_FOR_TEST,
CustomTestCase,
is_in_ci,
run_bench_serving,
write_github_step_summary,
)
class TestBenchServing(CustomTestCase):
def test_offline_throughput_default(self):
res = run_bench_serving(
model=DEFAULT_MODEL_NAME_FOR_TEST,
num_prompts=500,
request_rate=float("inf"),
other_server_args=[],
)
if is_in_ci():
write_github_step_summary(
f"### test_offline_throughput_default\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
self.assertGreater(res["output_throughput"], 3350)
def test_offline_throughput_non_stream_small_batch_size(self):
res = run_bench_serving(
model=DEFAULT_MODEL_NAME_FOR_TEST,
num_prompts=200,
request_rate=float("inf"),
other_server_args=["--max-running-requests", "10"],
dataset_name="sharegpt",
random_input_len=None,
random_output_len=None,
disable_stream=True,
need_warmup=True,
)
if is_in_ci():
write_github_step_summary(
f"### test_offline_throughput_non_stream_small_batch_size\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
# There is a regression with torch 2.5
# This number was 950 for torch 2.4
self.assertGreater(res["output_throughput"], 1000)
def test_offline_throughput_without_radix_cache(self):
res = run_bench_serving(
model=DEFAULT_MODEL_NAME_FOR_TEST,
num_prompts=500,
request_rate=float("inf"),
other_server_args=["--disable-radix-cache"],
)
if is_in_ci():
write_github_step_summary(
f"### test_offline_throughput_without_radix_cache\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
self.assertGreater(res["output_throughput"], 3350)
def test_offline_throughput_without_chunked_prefill(self):
res = run_bench_serving(
model=DEFAULT_MODEL_NAME_FOR_TEST,
num_prompts=500,
request_rate=float("inf"),
other_server_args=["--chunked-prefill-size", "-1"],
)
if is_in_ci():
write_github_step_summary(
f"### test_offline_throughput_without_chunked_prefill\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
self.assertGreater(res["output_throughput"], 2600)
def test_offline_throughput_with_triton_attention_backend(self):
res = run_bench_serving(
model=DEFAULT_MODEL_NAME_FOR_TEST,
num_prompts=500,
request_rate=float("inf"),
other_server_args=[
"--attention-backend",
"triton",
"--context-length",
"8192",
],
)
if is_in_ci():
write_github_step_summary(
f"### test_offline_throughput_with_triton_attention_backend\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
self.assertGreater(res["output_throughput"], 3450)
def test_offline_throughput_default_fp8(self):
res = run_bench_serving(
model=DEFAULT_FP8_MODEL_NAME_FOR_TEST,
num_prompts=500,
request_rate=float("inf"),
other_server_args=[],
)
if is_in_ci():
write_github_step_summary(
f"### test_offline_throughput_default_fp8\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
self.assertGreater(res["output_throughput"], 3900)
def test_online_latency_default(self):
res = run_bench_serving(
model=DEFAULT_MODEL_NAME_FOR_TEST,
num_prompts=100,
request_rate=1,
other_server_args=[],
)
if is_in_ci():
write_github_step_summary(
f"### test_online_latency_default\n"
f'median_e2e_latency_ms : {res["median_e2e_latency_ms"]:.2f} ms\n'
)
self.assertLess(res["median_e2e_latency_ms"], 11000)
self.assertLess(res["median_ttft_ms"], 86)
self.assertLess(res["median_itl_ms"], 10)
def test_online_latency_eagle(self):
res = run_bench_serving(
model=DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
num_prompts=300,
request_rate=8,
sharegpt_context_len=3072,
disable_ignore_eos=True,
dataset_name="sharegpt",
other_server_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"--speculative-num-steps",
"5",
"--speculative-eagle-topk",
"4",
"--speculative-num-draft-tokens",
"16",
"--mem-fraction-static",
"0.7",
],
need_warmup=True,
seed=42,
)
if is_in_ci():
write_github_step_summary(
f"### test_online_latency_eagle\n"
f'median_e2e_latency_ms : {res["median_e2e_latency_ms"]:.2f} ms\n'
f'accept_length : {res["accept_length"]:.2f} \n'
)
self.assertLess(res["median_e2e_latency_ms"], 900)
self.assertGreater(res["accept_length"], 2.99)
def test_moe_offline_throughput_default(self):
res = run_bench_serving(
model=DEFAULT_MOE_MODEL_NAME_FOR_TEST,
num_prompts=300,
request_rate=float("inf"),
other_server_args=["--tp", "2"],
)
if is_in_ci():
write_github_step_summary(
f"### test_moe_offline_throughput_default\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
self.assertGreater(res["output_throughput"], 2200)
def test_moe_offline_throughput_without_radix_cache(self):
res = run_bench_serving(
model=DEFAULT_MOE_MODEL_NAME_FOR_TEST,
num_prompts=300,
request_rate=float("inf"),
other_server_args=["--tp", "2", "--disable-radix-cache"],
)
if is_in_ci():
write_github_step_summary(
f"### test_moe_offline_throughput_without_radix_cache\n"
f'Output throughput: {res["output_throughput"]:.2f} token/s\n'
)
self.assertGreater(res["output_throughput"], 2200)
if __name__ == "__main__":
unittest.main()