sglang0.4.5.post1/benchmark/kernels/fused_moe_triton/README.md

50 lines
2.1 KiB
Markdown

## Benchmark Kernels
This directory contains benchmarking tools for MoE (Mixture of Experts) kernels.
### Tuning Tool
- `tuning_fused_moe_triton.py`: A tool for tuning the `fused_moe_triton` kernel. Adapted from [vllm's benchmark_moe.py](https://github.com/vllm-project/vllm/blob/main/benchmarks/kernels/benchmark_moe.py), with added support for various model architectures.
Example usage:
```bash
# Tune Qwen2-57B with FP8 and TP=4
python benchmark/kernels/fused_moe_triton/tuning_fused_moe_triton.py \
--model Qwen/Qwen2-57B-A14B-Instruct \
--tp-size 4 \
--dtype fp8_w8a8 \
--tune
# Tune Mixtral-8x7B with default settings
python benchmark/kernels/fused_moe_triton/tuning_fused_moe_triton.py \
--model mistralai/Mixtral-8x7B-Instruct-v0.1 \
--tune
```
After tuning, a configuration file (e.g., `E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json`) will be generated in the current directory. You can move this file to `sglang/srt/layers/fused_moe_triton/configs/` to use it in `sglang`.
### Performance Comparison Tool
- `benchmark_vllm_vs_sglang_fused_moe_triton.py`: A tool for comparing the performance of fused MoE kernels between vllm and sglang implementations. Supports various model architectures and data types.
Example usage:
```bash
# Compare with default settings (Mixtral model)
python benchmark/kernels/fused_moe_triton/benchmark_vllm_vs_sglang_fused_moe_triton.py
# Compare with FP8 mode for Qwen2-57B
python benchmark/kernels/fused_moe_triton/benchmark_vllm_vs_sglang_fused_moe_triton.py \
--model Qwen/Qwen2-57B-A14B-Instruct \
--use-fp8
# Compare with custom TP size
python benchmark/kernels/fused_moe_triton/benchmark_vllm_vs_sglang_fused_moe_triton.py \
--tp-size 4
```
The benchmark results will be saved as plots and data files in the specified output directory (default: `./configs/benchmark_ops/vllm_sglang_fused_moe/`).
- `benchmark_torch_compile_fused_moe.py`: A tool for benchmarking the performance of the fused MoE kernel with `torch.compile` and original fused MoE kernel.
Usage is the same as `benchmark_vllm_vs_sglang_fused_moe_triton.py`.