sglang_v0.5.2/flashinfer_0.3.1/csrc/fmha_cutlass_sm100.cu

125 lines
6.8 KiB
Plaintext

/*
* Copyright (c) 2025 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <flashinfer/attention/blackwell/fmha_cutlass_sm100.cuh>
#include <flashinfer/attention/mask.cuh>
#include <flashinfer/cutlass_utils.cuh>
#include "pytorch_extension_utils.h"
#define DISPATCH_mask_mode(mask_mode, MASK_MODE, ...) \
[&]() -> bool { \
if (mask_mode == MaskMode::kNone) { \
constexpr MaskMode MASK_MODE = MaskMode::kNone; \
return __VA_ARGS__(); \
} else if (mask_mode == MaskMode::kCausal) { \
constexpr MaskMode MASK_MODE = MaskMode::kCausal; \
return __VA_ARGS__(); \
} \
return false; \
}()
#define DISPATCH_head_dim(head_dim_qk, head_dim_vo, HEAD_DIM_QK, HEAD_DIM_VO, ...) \
[&]() -> bool { \
if (head_dim_qk == 192 && head_dim_vo == 128) { \
constexpr int HEAD_DIM_QK = 192; \
constexpr int HEAD_DIM_VO = 128; \
return __VA_ARGS__(); \
} else if (head_dim_qk == 128 && head_dim_vo == 128) { \
constexpr int HEAD_DIM_QK = 128; \
constexpr int HEAD_DIM_VO = 128; \
return __VA_ARGS__(); \
} \
return false; \
}()
#define DISPATCH_DTYPE_IN_OUT(in_dtype, out_dtype, c_type_in, c_type_out, ...) \
[&]() -> bool { \
if (in_dtype == out_dtype) { \
return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(in_dtype, c_type_in, [&] { \
using c_type_out = c_type_in; \
return __VA_ARGS__(); \
}); \
} \
return false; \
}()
#define DISPATCH_context(DTypeIn, DTypeOut, HEAD_DIM_QK, HEAD_DIM_VO, MaskMode, ...) \
{ \
DISPATCH_mask_mode(mask_mode, MaskMode, [&] { \
return DISPATCH_DTYPE_IN_OUT(scalar_type_in, scalar_type_out, DTypeIn, DTypeOut, [&] { \
return DISPATCH_head_dim(head_dim_qk, head_dim_vo, HEAD_DIM_QK, HEAD_DIM_VO, \
[&] { return __VA_ARGS__(); }); \
}); \
}); \
}
using namespace flashinfer;
void FMHACutlassSM100Run(at::Tensor workspace_buffer, at::Tensor q, at::Tensor k, at::Tensor v,
at::Tensor qo_segment_offsets, at::Tensor kv_segment_offsets,
at::Tensor work_indptr, at::Tensor qo_tile_indices,
at::Tensor qo_head_indices, at::Tensor batch_indices, at::Tensor o,
std::optional<at::Tensor> maybe_lse, int64_t mask_mode_code,
double sm_scale, int64_t num_qo_heads, int64_t num_kv_heads,
int64_t head_dim_qk, int64_t head_dim_vo, int64_t max_qo_len) {
CHECK(q.scalar_type() == k.scalar_type());
auto scalar_type_in = q.scalar_type();
auto scalar_type_out = o.scalar_type();
MaskMode mask_mode = static_cast<MaskMode>(mask_mode_code);
int total_qo_len = q.size(0);
int total_kv_len = k.size(0);
int batch_size = qo_segment_offsets.size(0) - 1;
int q_stride_n = q.stride(0);
int q_stride_h = q.stride(1);
int k_stride_n = k.stride(0);
int k_stride_h = k.stride(1);
int v_stride_n = v.stride(0);
int v_stride_h = v.stride(1);
const c10::cuda::OptionalCUDAGuard device_guard(qo_segment_offsets.device());
const cudaStream_t stream = c10::cuda::getCurrentCUDAStream();
DISPATCH_context(DTypeIn, DTypeOut, HEAD_DIM_QK, HEAD_DIM_VO, MASK_MODE, [&] {
using cutlass_type_in = cutlass_dtype_t<DTypeIn>;
using cutlass_type_out = cutlass_dtype_t<DTypeOut>;
using TILE_Q = _256;
using TILE_KV = _128;
using D_QK = cute::Int<HEAD_DIM_QK>;
using D_VO = cute::Int<HEAD_DIM_VO>;
using TileShapeQK = Shape<TILE_Q, TILE_KV, D_QK>;
using TileShapePV = Shape<TILE_Q, D_VO, TILE_KV>;
using CutlassMaskMode =
typename std::conditional<MASK_MODE == MaskMode::kCausal, CausalMask, ResidualMask>::type;
auto status = run_fmha_fwd<cutlass_type_in, cutlass_type_out, int32_t, TileShapeQK, TileShapePV,
CutlassMaskMode>(
workspace_buffer.data_ptr(), static_cast<cutlass_type_in*>(q.data_ptr()),
static_cast<cutlass_type_in*>(k.data_ptr()), static_cast<cutlass_type_in*>(v.data_ptr()),
static_cast<int*>(qo_segment_offsets.data_ptr()),
static_cast<int*>(kv_segment_offsets.data_ptr()), static_cast<int*>(work_indptr.data_ptr()),
static_cast<int*>(qo_tile_indices.data_ptr()),
static_cast<int*>(qo_head_indices.data_ptr()), static_cast<int*>(batch_indices.data_ptr()),
static_cast<cutlass_type_out*>(o.data_ptr()),
maybe_lse.has_value() ? static_cast<float*>(maybe_lse->data_ptr()) : nullptr,
mask_mode_code, sm_scale, num_qo_heads, num_kv_heads, head_dim_qk, head_dim_vo, q_stride_n,
q_stride_h, k_stride_n, k_stride_h, v_stride_n, v_stride_h, batch_size, total_qo_len,
total_kv_len, max_qo_len, stream);
TORCH_CHECK(status == cudaSuccess, "Cutlass FMHA forward pass failed",
cudaGetErrorString(status));
return true;
});
}