5.3 KiB
Attention Backend
SGLang supports multiple attention backends. Each of them has different pros and cons. You can test them according to your needs.
Supporting matrix for different attention backends
| Backend | Page Size > 1 | Spec Decoding | MLA | Sliding Window | MultiModal |
|---|---|---|---|---|---|
| FlashInfer | ❌ | ✅ | ✅ | ✅ | ✅ |
| FA3 | ✅ | ✅ | ✅ | ✅ | ✅ |
| Triton | ❌ | ✅ | ✅ | ✅ | ❌ |
| Torch Native | ❌ | ❌ | ✅ | ❌ | ❌ |
| FlashMLA | ✅ | ✅ | ✅ | ❌ | ❌ |
| TRTLLM MLA | ✅ | ❌ | ✅ | ✅ | ❌ |
| Ascend | ✅ | ❌ | ✅ | ❌ | ❌ |
| Wave | ✅ | ❌ | ❌ | ❌ | ❌ |
Notes:
- TRTLLM MLA only implements decode operations. For prefill operations (including multimodal inputs), it falls back to FlashInfer MLA backend.
Note: Every kernel backend is compatible with a page size > 1 by specifying an argument such as --page-size 16.
This is because a page size of 16 can be converted to a page size of 1 in the kernel backend.
The "❌" and "✅" symbols in the table above under "Page Size > 1" indicate whether the kernel actually operates with a page size greater than 1, rather than treating a page size of 16 as a page size of 1.
User guide
Launch command for different attention backends.
- FlashInfer (Default for Non-Hopper Machines, e.g., A100, A40)
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend flashinfer
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-V3 --attention-backend flashinfer --trust-remote-code
- FlashAttention 3 (Default for Hopper Machines, e.g., H100, H200, H20)
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend fa3
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-V3 --trust-remote-code --attention-backend fa3
- Triton
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend triton
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-V3 --attention-backend triton --trust-remote-code
- Torch Native
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend torch_native
- FlashMLA
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend flashmla --trust-remote-code
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend flashmla --kv-cache-dtype fp8_e4m3 --trust-remote-code
- TRTLLM MLA (Optimized for Blackwell Architecture, e.g., B200)
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend trtllm_mla --trust-remote-code
- TRTLLM MLA with FP8 KV Cache (Higher concurrency, lower memory footprint)
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend trtllm_mla --kv-cache-dtype fp8_e4m3 --trust-remote-code
- Ascend
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend ascend
- Wave
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend wave
Steps to add a new attention backend
To add a new attention backend, you can learn from the existing backends
(python/sglang/srt/layers/attention/triton_backend.py, python/sglang/srt/layers/attention/flashattention_backend.py)
and follow the steps below.
- Run without cuda graph. Support the two forward functions
- forward_extend
- Will be used for prefill, prefill with KV cache, and target verification
- It will be called once per layer
- forward_decode
- Will be used for normal decode, and draft decode
- It will be called once per layer
- init_forward_metadata
- Initialize the class and common metadata shared by all layers
- Call the plan function for optimizations like split_kv
- It will be called once per forward
- forward_extend
- Run with cuda graph. It has two phases (capture and replay) and you need to implement three functions
- init_cuda_graph_state
- It will be called once during life time
- Create all common shared buffers
- init_forward_metadata_capture_cuda_graph
- It will be called before capturing a cuda graph
- It is similar to init_forward_metadata but write the medatada to some pre-defined buffers
- init_forward_metadata_replay_cuda_graph
- It will be called before replaying a cuda graph
- This function is in the critical path and needs to be fast
- init_cuda_graph_state