1.4 KiB
1.4 KiB
Qwen3-Next Usage
SGLang has supported Qwen3-Next-80B-A3B-Instruct and Qwen3-Next-80B-A3B-Thinking since this PR.
Launch Qwen3-Next with SGLang
To serve Qwen3-Next models on 4xH100/H200 GPUs:
python3 -m sglang.launch_server --model Qwen/Qwen3-Next-80B-A3B-Instruct --tp 4
Configuration Tips
--max-mamba-cache-size: Adjust--max-mamba-cache-sizeto increase mamba cache space and max running requests capability. It will decrease KV cache space as a trade-off. You can adjust it according to workload.--mamba-ssm-dtype:bfloat16orfloat32, usebfloat16to save mamba cache size andfloat32to get more accurate results. The default setting isfloat32.
EAGLE Speculative Decoding
Description: SGLang has supported Qwen3-Next models with EAGLE speculative decoding.
Usage:
Add arguments --speculative-algorithm, --speculative-num-steps, --speculative-eagle-topk and --speculative-num-draft-tokens to enable this feature. For example:
python3 -m sglang.launch_server --model Qwen/Qwen3-Next-80B-A3B-Instruct --tp 4 --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4 --speculative-algo NEXTN
Details can be seen in this PR.