3.3 KiB
3.3 KiB
Embedding Models
SGLang provides robust support for embedding models by integrating efficient serving mechanisms with its flexible programming interface. This integration allows for streamlined handling of embedding tasks, facilitating faster and more accurate retrieval and semantic search operations. SGLang's architecture enables better resource utilization and reduced latency in embedding model deployment.
Embedding models are executed with `--is-embedding` flag and some may require `--trust-remote-code`
Quick Start
Launch Server
python3 -m sglang.launch_server \
--model-path Qwen/Qwen3-Embedding-4B \
--is-embedding \
--host 0.0.0.0 \
--port 30000
Client Request
import requests
url = "http://127.0.0.1:30000"
payload = {
"model": "Qwen/Qwen3-Embedding-4B",
"input": "What is the capital of France?",
"encoding_format": "float"
}
response = requests.post(url + "/v1/embeddings", json=payload).json()
print("Embedding:", response["data"][0]["embedding"])
Multimodal Embedding Example
For multimodal models like GME that support both text and images:
python3 -m sglang.launch_server \
--model-path Alibaba-NLP/gme-Qwen2-VL-2B-Instruct \
--is-embedding \
--chat-template gme-qwen2-vl \
--host 0.0.0.0 \
--port 30000
import requests
url = "http://127.0.0.1:30000"
text_input = "Represent this image in embedding space."
image_path = "https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild/resolve/main/images/023.jpg"
payload = {
"model": "gme-qwen2-vl",
"input": [
{
"text": text_input
},
{
"image": image_path
}
],
}
response = requests.post(url + "/v1/embeddings", json=payload).json()
print("Embeddings:", [x.get("embedding") for x in response.get("data", [])])
Supported Models
| Model Family | Example Model | Chat Template | Description |
|---|---|---|---|
| E5 (Llama/Mistral based) | intfloat/e5-mistral-7b-instruct |
N/A | High-quality text embeddings based on Mistral/Llama architectures |
| GTE-Qwen2 | Alibaba-NLP/gte-Qwen2-7B-instruct |
N/A | Alibaba's text embedding model with multilingual support |
| Qwen3-Embedding | Qwen/Qwen3-Embedding-4B |
N/A | Latest Qwen3-based text embedding model for semantic representation |
| BGE | BAAI/bge-large-en-v1.5 |
N/A | BAAI's text embeddings (requires attention-backend triton/torch_native) |
| GME (Multimodal) | Alibaba-NLP/gme-Qwen2-VL-2B-Instruct |
gme-qwen2-vl |
Multimodal embedding for text and image cross-modal tasks |
| CLIP | openai/clip-vit-large-patch14-336 |
N/A | OpenAI's CLIP for image and text embeddings |