sglang_v0.5.2/sglang/docs/supported_models/embedding_models.md

3.3 KiB

Embedding Models

SGLang provides robust support for embedding models by integrating efficient serving mechanisms with its flexible programming interface. This integration allows for streamlined handling of embedding tasks, facilitating faster and more accurate retrieval and semantic search operations. SGLang's architecture enables better resource utilization and reduced latency in embedding model deployment.

Embedding models are executed with `--is-embedding` flag and some may require `--trust-remote-code`

Quick Start

Launch Server

python3 -m sglang.launch_server \
  --model-path Qwen/Qwen3-Embedding-4B \
  --is-embedding \
  --host 0.0.0.0 \
  --port 30000

Client Request

import requests

url = "http://127.0.0.1:30000"

payload = {
    "model": "Qwen/Qwen3-Embedding-4B",
    "input": "What is the capital of France?",
    "encoding_format": "float"
}

response = requests.post(url + "/v1/embeddings", json=payload).json()
print("Embedding:", response["data"][0]["embedding"])

Multimodal Embedding Example

For multimodal models like GME that support both text and images:

python3 -m sglang.launch_server \
  --model-path Alibaba-NLP/gme-Qwen2-VL-2B-Instruct \
  --is-embedding \
  --chat-template gme-qwen2-vl \
  --host 0.0.0.0 \
  --port 30000
import requests

url = "http://127.0.0.1:30000"

text_input = "Represent this image in embedding space."
image_path = "https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild/resolve/main/images/023.jpg"

payload = {
    "model": "gme-qwen2-vl",
    "input": [
        {
            "text": text_input
        },
        {
            "image": image_path
        }
    ],
}

response = requests.post(url + "/v1/embeddings", json=payload).json()

print("Embeddings:", [x.get("embedding") for x in response.get("data", [])])

Supported Models

Model Family Example Model Chat Template Description
E5 (Llama/Mistral based) intfloat/e5-mistral-7b-instruct N/A High-quality text embeddings based on Mistral/Llama architectures
GTE-Qwen2 Alibaba-NLP/gte-Qwen2-7B-instruct N/A Alibaba's text embedding model with multilingual support
Qwen3-Embedding Qwen/Qwen3-Embedding-4B N/A Latest Qwen3-based text embedding model for semantic representation
BGE BAAI/bge-large-en-v1.5 N/A BAAI's text embeddings (requires attention-backend triton/torch_native)
GME (Multimodal) Alibaba-NLP/gme-Qwen2-VL-2B-Instruct gme-qwen2-vl Multimodal embedding for text and image cross-modal tasks
CLIP openai/clip-vit-large-patch14-336 N/A OpenAI's CLIP for image and text embeddings