18 KiB
Sampling Parameters
This doc describes the sampling parameters of the SGLang Runtime. It is the low-level endpoint of the runtime. If you want a high-level endpoint that can automatically handle chat templates, consider using the OpenAI Compatible API.
/generate Endpoint
The /generate endpoint accepts the following parameters in JSON format. For detailed usage, see the native API doc. The object is defined at io_struct.py::GenerateReqInput. You can also read the source code to find more arguments and docs.
| Argument | Type/Default | Description |
|---|---|---|
| text | Optional[Union[List[str], str]] = None |
The input prompt. Can be a single prompt or a batch of prompts. |
| input_ids | Optional[Union[List[List[int]], List[int]]] = None |
The token IDs for text; one can specify either text or input_ids. |
| input_embeds | Optional[Union[List[List[List[float]]], List[List[float]]]] = None |
The embeddings for input_ids; one can specify either text, input_ids, or input_embeds. |
| image_data | Optional[Union[List[List[ImageDataItem]], List[ImageDataItem], ImageDataItem]] = None |
The image input. Can be an image instance, file name, URL, or base64 encoded string. Can be a single image, list of images, or list of lists of images. |
| audio_data | Optional[Union[List[AudioDataItem], AudioDataItem]] = None |
The audio input. Can be a file name, URL, or base64 encoded string. |
| sampling_params | Optional[Union[List[Dict], Dict]] = None |
The sampling parameters as described in the sections below. |
| rid | Optional[Union[List[str], str]] = None |
The request ID. |
| return_logprob | Optional[Union[List[bool], bool]] = None |
Whether to return log probabilities for tokens. |
| logprob_start_len | Optional[Union[List[int], int]] = None |
If return_logprob, the start location in the prompt for returning logprobs. Default is "-1", which returns logprobs for output tokens only. |
| top_logprobs_num | Optional[Union[List[int], int]] = None |
If return_logprob, the number of top logprobs to return at each position. |
| token_ids_logprob | Optional[Union[List[List[int]], List[int]]] = None |
If return_logprob, the token IDs to return logprob for. |
| return_text_in_logprobs | bool = False |
Whether to detokenize tokens in text in the returned logprobs. |
| stream | bool = False |
Whether to stream output. |
| lora_path | Optional[Union[List[Optional[str]], Optional[str]]] = None |
The path to the LoRA. |
| custom_logit_processor | Optional[Union[List[Optional[str]], str]] = None |
Custom logit processor for advanced sampling control. Must be a serialized instance of CustomLogitProcessor using its to_str() method. For usage see below. |
| return_hidden_states | Union[List[bool], bool] = False |
Whether to return hidden states. |
Sampling parameters
The object is defined at sampling_params.py::SamplingParams. You can also read the source code to find more arguments and docs.
Core parameters
| Argument | Type/Default | Description |
|---|---|---|
| max_new_tokens | int = 128 |
The maximum output length measured in tokens. |
| stop | Optional[Union[str, List[str]]] = None |
One or multiple stop words. Generation will stop if one of these words is sampled. |
| stop_token_ids | Optional[List[int]] = None |
Provide stop words in the form of token IDs. Generation will stop if one of these token IDs is sampled. |
| temperature | float = 1.0 |
Temperature when sampling the next token. temperature = 0 corresponds to greedy sampling, a higher temperature leads to more diversity. |
| top_p | float = 1.0 |
Top-p selects tokens from the smallest sorted set whose cumulative probability exceeds top_p. When top_p = 1, this reduces to unrestricted sampling from all tokens. |
| top_k | int = -1 |
Top-k randomly selects from the k highest-probability tokens. |
| min_p | float = 0.0 |
Min-p samples from tokens with probability larger than min_p * highest_token_probability. |
Penalizers
| Argument | Type/Default | Description |
|---|---|---|
| frequency_penalty | float = 0.0 |
Penalizes tokens based on their frequency in generation so far. Must be between -2 and 2 where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of penalization grows linearly with each appearance of a token. |
| presence_penalty | float = 0.0 |
Penalizes tokens if they appeared in the generation so far. Must be between -2 and 2 where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of the penalization is constant if a token occurred. |
| min_new_tokens | int = 0 |
Forces the model to generate at least min_new_tokens until a stop word or EOS token is sampled. Note that this might lead to unintended behavior, for example, if the distribution is highly skewed towards these tokens. |
Constrained decoding
Please refer to our dedicated guide on constrained decoding for the following parameters.
| Argument | Type/Default | Description |
|---|---|---|
| json_schema | Optional[str] = None |
JSON schema for structured outputs. |
| regex | Optional[str] = None |
Regex for structured outputs. |
| ebnf | Optional[str] = None |
EBNF for structured outputs. |
| structural_tag | Optional[str] = None |
The structal tag for structured outputs. |
Other options
| Argument | Type/Default | Description |
|---|---|---|
| n | int = 1 |
Specifies the number of output sequences to generate per request. (Generating multiple outputs in one request (n > 1) is discouraged; repeating the same prompts several times offers better control and efficiency.) |
| ignore_eos | bool = False |
Don't stop generation when EOS token is sampled. |
| skip_special_tokens | bool = True |
Remove special tokens during decoding. |
| spaces_between_special_tokens | bool = True |
Whether or not to add spaces between special tokens during detokenization. |
| no_stop_trim | bool = False |
Don't trim stop words or EOS token from the generated text. |
| custom_params | Optional[List[Optional[Dict[str, Any]]]] = None |
Used when employing CustomLogitProcessor. For usage, see below. |
Examples
Normal
Launch a server:
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Send a request:
import requests
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "The capital of France is",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 32,
},
},
)
print(response.json())
Detailed example in send request.
Streaming
Send a request and stream the output:
import requests, json
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "The capital of France is",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 32,
},
"stream": True,
},
stream=True,
)
prev = 0
for chunk in response.iter_lines(decode_unicode=False):
chunk = chunk.decode("utf-8")
if chunk and chunk.startswith("data:"):
if chunk == "data: [DONE]":
break
data = json.loads(chunk[5:].strip("\n"))
output = data["text"].strip()
print(output[prev:], end="", flush=True)
prev = len(output)
print("")
Detailed example in openai compatible api.
Multimodal
Launch a server:
python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov
Download an image:
curl -o example_image.png -L https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true
Send a request:
import requests
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"<|im_start|>user\n<image>\nDescribe this image in a very short sentence.<|im_end|>\n"
"<|im_start|>assistant\n",
"image_data": "example_image.png",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 32,
},
},
)
print(response.json())
The image_data can be a file name, a URL, or a base64 encoded string. See also python/sglang/srt/utils.py:load_image.
Streaming is supported in a similar manner as above.
Detailed example in OpenAI API Vision.
Structured Outputs (JSON, Regex, EBNF)
You can specify a JSON schema, regular expression or EBNF to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (json_schema, regex, or ebnf) can be specified for a request.
SGLang supports two grammar backends:
- XGrammar (default): Supports JSON schema, regular expression, and EBNF constraints.
- XGrammar currently uses the GGML BNF format.
- Outlines: Supports JSON schema and regular expression constraints.
If instead you want to initialize the Outlines backend, you can use --grammar-backend outlines flag:
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: xgrammar)
import json
import requests
json_schema = json.dumps({
"type": "object",
"properties": {
"name": {"type": "string", "pattern": "^[\\w]+$"},
"population": {"type": "integer"},
},
"required": ["name", "population"],
})
# JSON (works with both Outlines and XGrammar)
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "Here is the information of the capital of France in the JSON format.\n",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 64,
"json_schema": json_schema,
},
},
)
print(response.json())
# Regular expression (Outlines backend only)
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "Paris is the capital of",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 64,
"regex": "(France|England)",
},
},
)
print(response.json())
# EBNF (XGrammar backend only)
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "Write a greeting.",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 64,
"ebnf": 'root ::= "Hello" | "Hi" | "Hey"',
},
},
)
print(response.json())
Detailed example in structured outputs.
Custom logit processor
Launch a server with --enable-custom-logit-processor flag on.
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --enable-custom-logit-processor
Define a custom logit processor that will always sample a specific token id.
from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor
class DeterministicLogitProcessor(CustomLogitProcessor):
"""A dummy logit processor that changes the logits to always
sample the given token id.
"""
def __call__(self, logits, custom_param_list):
# Check that the number of logits matches the number of custom parameters
assert logits.shape[0] == len(custom_param_list)
key = "token_id"
for i, param_dict in enumerate(custom_param_list):
# Mask all other tokens
logits[i, :] = -float("inf")
# Assign highest probability to the specified token
logits[i, param_dict[key]] = 0.0
return logits
Send a request:
import requests
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "The capital of France is",
"custom_logit_processor": DeterministicLogitProcessor().to_str(),
"sampling_params": {
"temperature": 0.0,
"max_new_tokens": 32,
"custom_params": {"token_id": 5},
},
},
)
print(response.json())