sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/bench/gemm-benchmark.cc

1237 lines
49 KiB
C++

// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include "utils.h"
#include "xnnpack.h"
#include "xnnpack/common.h"
#include "xnnpack/config-types.h"
#include "xnnpack/gemm.h"
#include "xnnpack/math.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/microparams-init.h"
#include "xnnpack/microparams.h"
#include "xnnpack/pack.h"
#include "xnnpack/packq.h"
#include "xnnpack/packw.h"
#include "xnnpack/buffer.h"
#include <benchmark/benchmark.h>
void GEMMBenchmark(benchmark::State& state, xnn_qs8_gemm_minmax_ukernel_fn gemm,
xnn_init_qs8_conv_minmax_params_fn init_params,
xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr,
size_t sr, benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000),
std::ref(rng));
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t));
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<int8_t> k(nc * kc);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<int32_t> b(nc);
std::generate(b.begin(), b.end(), std::ref(i32rng));
const size_t w_element_size = sizeof(int8_t);
const size_t w_size = nc_stride * sizeof(int32_t) + kc_stride * nc_stride * w_element_size;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
w_size + c_elements * sizeof(int8_t));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_size * num_buffers);
const xnn_qs8_packing_params packing_params = {127};
pack(/*g=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr,
w.data(),
/*extra_bytes=*/0, &packing_params);
xnnpack::Buffer<int8_t> c(c_elements * num_buffers);
union xnn_qs8_conv_minmax_params quantization_params;
init_params(&quantization_params,
/*scale=*/0.75f,
/*output_zero_point=*/127,
/*output_min=*/-127,
/*output_max=*/126);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(int8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
for (uint32_t n = 0; n < nc; n += nr) {
const uint32_t nb = min(nc - n, nr);
gemm(mb, nb, kc * sizeof(int8_t), a.data() + m * kc,
kc * sizeof(int8_t),
w.data() + w_size * buffer_index +
n * (kc_stride * w_element_size + sizeof(int32_t)),
c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(int8_t),
nr * sizeof(int8_t), &quantization_params);
}
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qs8_qc8w_gemm_minmax_ukernel_fn gemm,
xnn_init_qs8_qc8w_conv_minmax_params_fn init_params,
xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr,
size_t sr, benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000),
std::ref(rng));
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t));
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<int8_t> k(nc * kc);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<int32_t> b(nc);
std::generate(b.begin(), b.end(), std::ref(i32rng));
const size_t w_element_size = sizeof(int8_t);
const size_t w_size = nc_stride * sizeof(int32_t) + kc_stride * nc_stride * w_element_size;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
w_size + c_elements * sizeof(int8_t));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_size * num_buffers);
const xnn_qs8_packing_params packing_params = {int8_t(127 - 0x80)};
pack(/*g=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr,
w.data(), nr * sizeof(float), &packing_params);
xnnpack::Buffer<int8_t> c(c_elements * num_buffers);
union xnn_qs8_qc8w_conv_minmax_params quantization_params;
init_params(&quantization_params,
/*output_zero_point=*/127,
/*output_min=*/-127,
/*output_max=*/126);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(int8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
for (uint32_t n = 0; n < nc; n += nr) {
const uint32_t nb = min(nc - n, nr);
gemm(mb, nb, kc * sizeof(int8_t), a.data() + m * kc,
kc * sizeof(int8_t),
w.data() + w_size * buffer_index +
n * (kc_stride * w_element_size + sizeof(int32_t)),
c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(int8_t),
nr * sizeof(int8_t), &quantization_params);
}
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qd8_f16_qc8w_gemm_ukernel_fn gemm,
xnn_init_f16_minmax_params_fn init_params,
xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr,
size_t sr, benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t));
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<int8_t> k(nc * kc);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<xnn_qd8_quantization_params> quantization_params(
mc + XNN_EXTRA_QUANTIZATION_PARAMS);
const size_t w_elements =
nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_elements * num_buffers);
const xnn_qs8_packing_params packing_params = {/*input_zero_point=*/1};
pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr,
w.data(), sizeof(float) * 2 * nr, &packing_params);
xnnpack::Buffer<xnn_float16> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f16_minmax_params params;
init_params(&params,
static_cast<xnn_float16>(std::numeric_limits<int8_t>::min()),
static_cast<xnn_float16>(std::numeric_limits<int8_t>::max()));
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t),
w.data() + w_elements * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(xnn_float16),
nr * sizeof(xnn_float16), &params, quantization_params.data() + m);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qd8_f32_qc8w_gemm_ukernel_fn gemm,
xnn_init_f32_minmax_params_fn init_params,
xnn_pack_qs8_gemm_fn pack, size_t mr, size_t nr, size_t kr,
size_t sr, benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(int8_t));
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<int8_t> k(nc * kc);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<xnn_qd8_quantization_params> quantization_params(
mc + XNN_EXTRA_QUANTIZATION_PARAMS);
const size_t w_elements =
nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_elements * num_buffers);
const xnn_qs8_packing_params packing_params = {/*input_zero_point=*/1};
pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr,
w.data(), sizeof(float) * 2 * nr, &packing_params);
xnnpack::Buffer<float> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max());
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t),
w.data() + w_elements * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float),
nr * sizeof(float), &params, quantization_params.data() + m);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qd8_f16_qb4w_gemm_ukernel_fn gemm,
xnn_init_f16_qb4w_minmax_params_fn init_params,
xnn_pack_qs8_qb4w_gemm_fn pack, size_t mr, size_t nr,
size_t kr, size_t sr,
benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t bl = state.range(3);
const size_t kc = round_up(state.range(2), bl);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto scalerng = std::bind(std::uniform_real_distribution<float>(0.5f, 2.f),
std::ref(rng));
const size_t planes = 2; // 4 bit is 2 planes - low nibbles and high nibbles
const size_t k2 = round_up_po2(kc, 2); // tester assumes byte aligned rows
const size_t packed_k2 =
round_up_po2(kc, kr * sr * planes); // 2 blocks for nibbles
const size_t packed_k_bytes = (packed_k2 + 1) / 2;
const size_t num_blocks = packed_k2 / bl;
const size_t packed_n = round_up_po2(nc, nr);
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES);
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<uint8_t> k(nc * kc / 2);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<xnn_bfloat16> kernel_scale2d(nc * k2 / bl);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
std::generate(kernel_scale2d.begin(), kernel_scale2d.end(),
[&]() { return scalerng(); });
xnnpack::Buffer<xnn_qd8_quantization_params> quantization_params(
mc + XNN_EXTRA_QUANTIZATION_PARAMS);
const size_t w_bytes = packed_n * packed_k_bytes +
/* vksum */ packed_n * sizeof(float) +
/* scales */ packed_n * num_blocks * sizeof(float) +
/* bias */ packed_n * sizeof(float);
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
w_bytes + sizeof(xnn_bfloat16) * c_elements);
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_bytes * num_buffers);
const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1,
/*kernel_zero_point=*/8};
pack(1, nc, k2, nr, kr, sr, bl, k.data(), /*bias=*/nullptr,
/*scale=*/kernel_scale2d.data(), w.data(), sizeof(float) * nr,
sizeof(float) * nr, &packing_params);
xnnpack::Buffer<xnn_float16> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f16_qb4w_minmax_params params;
init_params(
&params, std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max(), 8, bl);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t),
w.data() + w_bytes * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(xnn_float16),
nr * sizeof(xnn_float16), &params, quantization_params.data() + m);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qd8_f16_qc4w_gemm_ukernel_fn gemm,
xnn_init_f16_qc4w_minmax_params_fn init_params,
xnn_pack_qs8_qc4w_gemm_fn pack, size_t mr, size_t nr,
size_t kr, size_t sr,
benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr) / 2;
std::random_device random_device;
auto rng = std::mt19937(random_device());
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES);
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<uint8_t> k(nc * kc / 2);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<xnn_qd8_quantization_params> quantization_params(
mc + XNN_EXTRA_QUANTIZATION_PARAMS);
const size_t w_elements =
nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_elements * num_buffers);
const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1,
/*kernel_zero_point=*/8};
pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr,
w.data(), sizeof(float) * 2 * nr, &packing_params);
xnnpack::Buffer<xnn_float16> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f16_qc4w_minmax_params params;
init_params(&params,
std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max(), 8);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t),
w.data() + w_elements * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(xnn_float16),
nr * sizeof(xnn_float16), &params, quantization_params.data() + m);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qd8_f32_qb4w_gemm_ukernel_fn gemm,
xnn_init_f32_qb4w_minmax_params_fn init_params,
xnn_pack_qs8_qb4w_gemm_fn pack, size_t mr, size_t nr,
size_t kr, size_t sr,
benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t bl = state.range(3);
const size_t kc = round_up(state.range(2), bl);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto scalerng = std::bind(std::uniform_real_distribution<float>(0.5f, 2.f),
std::ref(rng));
const size_t planes = 2; // 4 bit is 2 planes - low nibbles and high nibbles
const size_t k2 = round_up_po2(kc, 2); // tester assumes byte aligned rows
const size_t packed_k2 =
round_up_po2(kc, kr * sr * planes); // 2 blocks for nibbles
const size_t packed_k_bytes = (packed_k2 + 1) / 2;
const size_t num_blocks = packed_k2 / bl;
const size_t packed_n = round_up_po2(nc, nr);
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES);
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<uint8_t> k(nc * kc / 2);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<xnn_bfloat16> kernel_scale2d(nc * k2 / bl);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
std::generate(kernel_scale2d.begin(), kernel_scale2d.end(),
[&]() { return scalerng(); });
xnnpack::Buffer<xnn_qd8_quantization_params> quantization_params(
mc + XNN_EXTRA_QUANTIZATION_PARAMS);
const size_t w_bytes = packed_n * packed_k_bytes +
/* vksum */ packed_n * sizeof(float) +
/* scales */ packed_n * num_blocks * sizeof(float) +
/* bias */ packed_n * sizeof(float);
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
w_bytes + sizeof(float) * c_elements);
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_bytes * num_buffers);
const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1,
/*kernel_zero_point=*/8};
pack(1, nc, k2, nr, kr, sr, bl, k.data(), /*bias=*/nullptr,
/*scale=*/kernel_scale2d.data(), w.data(), sizeof(float) * nr,
sizeof(float) * nr, &packing_params);
xnnpack::Buffer<float> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f32_qb4w_minmax_params params;
init_params(&params, std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max(), 8, bl);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t),
w.data() + w_bytes * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float),
nr * sizeof(float), &params, quantization_params.data() + m);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qd8_f32_qc4w_gemm_ukernel_fn gemm,
xnn_init_f32_qc4w_minmax_params_fn init_params,
xnn_pack_qs8_qc4w_gemm_fn pack, size_t mr, size_t nr,
size_t kr, size_t sr,
benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = round_up_po2(nc, nr);
const size_t kc_stride = (round_up_po2(kc, kr * sr * 2) + 1) / 2;
std::random_device random_device;
auto rng = std::mt19937(random_device());
xnnpack::Buffer<int8_t> a(mc * kc + XNN_EXTRA_BYTES);
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<uint8_t> k(nc * kc / 2);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<xnn_qd8_quantization_params> quantization_params(
mc + XNN_EXTRA_QUANTIZATION_PARAMS);
const size_t w_elements =
nc_stride * (sizeof(float) * 2 + sizeof(int32_t)) + kc_stride * nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(w_elements * num_buffers);
const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1,
/*kernel_zero_point=*/8};
pack(1, nc, kc, nr, kr, sr, k.data(), /*bias=*/nullptr, /*scale=*/nullptr,
w.data(), sizeof(float) * 2 * nr, &packing_params);
xnnpack::Buffer<float> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f32_qc4w_minmax_params params;
init_params(&params, std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max(), 0);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc, a.data() + m * kc, kc * sizeof(int8_t),
w.data() + w_elements * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float),
nr * sizeof(float), &params, quantization_params.data() + m);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qp8_f32_qc4w_gemm_minmax_ukernel_fn gemm,
xnn_init_f32_minmax_params_fn init_minmax_params,
xnn_pack_weights_and_biases_fn pack_weights,
xnn_packed_stride_weights_and_biases_fn packed_stride,
size_t mr, size_t nr, size_t kr, size_t sr, size_t mr_packed,
benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = round_up(state.range(2), 2UL);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f),
std::ref(rng));
xnnpack::Buffer<float> a(mc * kc + XNN_EXTRA_BYTES);
std::generate(a.begin(), a.end(), std::ref(f32rng));
xnnpack::Buffer<uint8_t> k(nc * kc / 2);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
// Create a fake `gemm_config` for the packing functions.
struct xnn_gemm_config gemm_config;
gemm_config.mr = static_cast<uint8_t>(mr);
gemm_config.mr_packed = static_cast<uint8_t>(mr_packed);
gemm_config.nr = static_cast<uint8_t>(nr);
gemm_config.log2_kr = static_cast<uint8_t>(31 - math_clz_nonzero_u32(kr));
gemm_config.log2_sr = static_cast<uint8_t>(31 - math_clz_nonzero_u32(sr));
const size_t packed_w_stride =
packed_stride(&gemm_config, kc, /*k_stride=*/kc, /*extra_bytes=*/0);
const size_t packed_w_size = packed_w_stride * round_up(nc, nr);
const size_t c_elements = mc * nc;
const size_t num_buffers =
1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (packed_w_size + c_elements));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(packed_w_size * num_buffers);
// Quantize the left-hand operand.
const size_t input_packed_size =
xnn_x8_packq_f32qp8_packed_size(mc, kc, mr_packed, kr, sr);
xnnpack::Buffer<int8_t> input_qp8(input_packed_size);
xnn_x8_packq_f32qp8_ukernel__scalar_u1(mc, kc, mr_packed, kr, sr,
/*m_idx_start=*/0, a.data(),
/*lhs_stride=*/kc * sizeof(float),
input_qp8.data());
// RHS packing
xnnpack::Buffer<float> kernel_scale(nc, 1.0f);
const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1,
/*kernel_zero_point=*/8};
pack_weights(/*flags=*/0, &gemm_config, kc, nc,
/*groups=*/1, /*k_stride=*/kc,
/*accumulator_init=*/nullptr,
/*weights=*/k.data(),
/*int_extra_data0_fn=*/nullptr,
/*extra_data0=*/nullptr,
/*extra_data0_size=*/0,
/*init_extra_data1_fn=*/
nullptr,
/*extra_data1=*/kernel_scale.data(),
/*extra_data1_size=*/sizeof(float),
/*packed_weights_ptr=*/w.data(), &packing_params);
xnnpack::Buffer<float> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f32_minmax_params minmax_params;
init_minmax_params(&minmax_params, -std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity());
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc,
input_qp8.data() +
xnn_x8_packq_f32qp8_packed_offset(m, kc, mr, kr, sr),
w.data() + packed_w_size * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float),
sizeof(float), &minmax_params);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] = benchmark::Counter(
static_cast<uint64_t>(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state,
xnn_qp8_f32_qb4w_gemm_minmax_ukernel_fn gemm,
xnn_init_f32_qb4w_minmax_params_fn init_params,
xnn_pack_weights_and_biases_fn pack_weights,
xnn_packed_stride_weights_and_biases_fn packed_stride,
size_t mr, size_t nr, size_t kr, size_t sr, size_t mr_packed,
benchmark::utils::IsaCheckFunction isa_check) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t bl = state.range(3);
const size_t kc = round_up(state.range(2), 2UL);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f),
std::ref(rng));
auto scalerng = std::bind(std::uniform_real_distribution<float>(0.5f, 2.f),
std::ref(rng));
const size_t k2 = round_up_po2(kc, 2); // tester assumes byte aligned rows
xnnpack::Buffer<float> a(mc * k2);
std::generate(a.begin(), a.end(), std::ref(f32rng));
xnnpack::Buffer<uint8_t> k(nc * k2 / 2);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
// Create a fake `gemm_config` for the packing functions.
struct xnn_gemm_config gemm_config;
gemm_config.mr = static_cast<uint8_t>(mr);
gemm_config.mr_packed = static_cast<uint8_t>(mr_packed);
gemm_config.nr = static_cast<uint8_t>(nr);
gemm_config.log2_kr = static_cast<uint8_t>(31 - math_clz_nonzero_u32(kr));
gemm_config.log2_sr = static_cast<uint8_t>(31 - math_clz_nonzero_u32(sr));
const size_t packed_w_stride =
packed_stride(&gemm_config, k2, /*k_stride=*/bl, /*extra_bytes=*/0);
const size_t packed_w_size = packed_w_stride * round_up(nc, nr);
const size_t c_elements = mc * nc;
const size_t num_buffers =
1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (packed_w_size + c_elements));
xnnpack::Buffer<char, XNN_ALLOCATION_ALIGNMENT> w(packed_w_size * num_buffers);
// Quantize the left-hand operand.
const size_t input_packed_size =
xnn_x8_packq_f32qp8_packed_size(mc, k2, mr_packed, kr, sr);
xnnpack::Buffer<int8_t> input_qp8(input_packed_size);
xnn_x8_packq_f32qp8_ukernel__scalar_u1(mc, k2, mr_packed, kr, sr,
/*m_idx_start=*/0, a.data(),
/*lhs_stride=*/k2 * sizeof(float),
input_qp8.data());
// RHS packing
xnnpack::Buffer<xnn_float16> kernel_scale2d(nc * k2 / bl);
std::generate(kernel_scale2d.begin(), kernel_scale2d.end(),
[&]() { return math_cvt_bf16_fp32(scalerng()); });
const xnn_qs8_qc4w_packing_params packing_params = {/*input_zero_point=*/1,
/*kernel_zero_point=*/8};
pack_weights(/*flags=*/0, &gemm_config, k2, nc,
/*groups=*/1, /*k_stride=*/bl,
/*accumulator_init=*/nullptr,
/*weights=*/k.data(),
/*int_extra_data0_fn=*/nullptr,
/*extra_data0=*/nullptr,
/*extra_data0_size=*/0,
/*init_extra_data1_fn=*/
nullptr,
/*extra_data1=*/kernel_scale2d.data(),
/*extra_data1_size=*/sizeof(float),
/*packed_weights_ptr=*/w.data(), &packing_params);
xnnpack::Buffer<float> c(c_elements * num_buffers);
// Prepare parameters.
xnn_f32_qb4w_minmax_params minmax_params;
init_params(&minmax_params, std::numeric_limits<int8_t>::min(),
std::numeric_limits<int8_t>::max(), 8, bl);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size());
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc,
input_qp8.data() +
xnn_x8_packq_f32qp8_packed_offset(m, kc, mr, kr, sr),
w.data() + packed_w_size * buffer_index,
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float),
sizeof(float), &minmax_params);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] = benchmark::Counter(
static_cast<uint64_t>(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state, xnn_qu8_gemm_minmax_ukernel_fn gemm,
xnn_init_qu8_conv_minmax_params_fn init_params,
xnn_pack_qu8_gemm_fn pack, size_t mr, size_t nr, size_t kr,
size_t sr,
benchmark::utils::IsaCheckFunction isa_check = nullptr) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000),
std::ref(rng));
xnnpack::Buffer<uint8_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(uint8_t));
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<uint8_t> k(nc * kc);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<int32_t> b(nc);
std::generate(b.begin(), b.end(), std::ref(i32rng));
const size_t w_elements =
kc_stride * nc_stride + nc_stride * sizeof(int32_t) / sizeof(uint8_t);
const size_t c_elements = mc * nc;
const size_t num_buffers =
1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(uint8_t) * (w_elements + c_elements));
xnnpack::Buffer<uint8_t, XNN_ALLOCATION_ALIGNMENT> w(w_elements * num_buffers);
const xnn_qu8_packing_params packing_params = {127, 127};
pack(/*groups=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr,
w.data(),
/*extra_bytes=*/0, &packing_params);
xnnpack::Buffer<uint8_t> c(c_elements * num_buffers);
union xnn_qu8_conv_minmax_params quantization_params;
init_params(&quantization_params, 127, 0.75f, 127, 1, 254);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
for (uint32_t n = 0; n < nc; n += nr) {
const uint32_t nb = min(nc - n, nr);
gemm(mb, nb, kc * sizeof(uint8_t), a.data() + m * kc,
kc * sizeof(uint8_t),
w.data() + (w_elements * buffer_index +
n * (kc_stride + sizeof(int32_t))) /
sizeof(uint8_t),
c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint8_t),
nr * sizeof(uint8_t), &quantization_params);
}
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state, xnn_f32_gemm_minmax_ukernel_fn gemm,
xnn_init_f32_minmax_params_fn init_params,
xnn_pack_f32_gemm_fn pack, size_t mr, size_t nr, size_t kr,
size_t sr,
benchmark::utils::IsaCheckFunction isa_check = nullptr) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng =
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
xnnpack::Buffer<float> a(mc * kc + XNN_EXTRA_BYTES / sizeof(float));
std::generate(a.begin(), a.end(), std::ref(f32rng));
xnnpack::Buffer<float> k(nc * kc);
std::generate(k.begin(), k.end(), std::ref(f32rng));
xnnpack::Buffer<float> b(nc);
std::generate(b.begin(), b.end(), std::ref(f32rng));
const size_t w_elements = nc_stride * kc_stride + nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
xnnpack::Buffer<float, XNN_ALLOCATION_ALIGNMENT> w(w_elements * num_buffers);
pack(/*groups=*/1, nc, kc, nr, kr, sr, k.data(), b.data(), /*scale=*/nullptr,
w.data(), /*extra_bytes=*/0, /*params=*/nullptr);
xnnpack::Buffer<float> c(c_elements * num_buffers);
xnn_f32_minmax_params params;
init_params(&params, -std::numeric_limits<float>::infinity(),
+std::numeric_limits<float>::infinity());
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc * sizeof(float), a.data() + m * kc, kc * sizeof(float),
w.data() + buffer_index * nc_stride * (kc_stride + 1),
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float),
nr * sizeof(float), &params);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["FLOPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state, xnn_f32_gemm_minmax_ukernel_fn gemm,
xnn_init_f32_minmax_params_fn init_params, size_t mr,
size_t nr, size_t kr, size_t sr,
benchmark::utils::IsaCheckFunction isa_check = nullptr) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng =
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
xnnpack::Buffer<float> a(mc * kc + XNN_EXTRA_BYTES / sizeof(float));
std::generate(a.begin(), a.end(), std::ref(f32rng));
const size_t k_elements = nc * kc;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (k_elements + c_elements));
xnnpack::Buffer<float> k(k_elements * num_buffers);
xnnpack::Buffer<float> c(c_elements * num_buffers);
std::generate(k.begin(), k.end(), std::ref(f32rng));
xnn_f32_minmax_params params;
init_params(&params, -std::numeric_limits<float>::infinity(),
+std::numeric_limits<float>::infinity());
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - K is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(mb, nc, kc * sizeof(float), a.data() + m * kc, kc * sizeof(float),
k.data() + (buffer_index * k_elements),
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float),
nr * sizeof(float), &params);
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["FLOPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}
void GEMMBenchmark(benchmark::State& state, xnn_f16_gemm_minmax_ukernel_fn gemm,
xnn_init_f16_minmax_params_fn init_params,
xnn_pack_f16_gemm_fn pack, size_t mr, size_t nr, size_t kr,
size_t sr,
benchmark::utils::IsaCheckFunction isa_check = nullptr) {
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng =
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
xnnpack::Buffer<xnn_float16> a(mc * kc + XNN_EXTRA_BYTES / sizeof(xnn_float16));
std::generate(a.begin(), a.end(), f32rng);
xnnpack::Buffer<xnn_float16> k(nc * kc);
std::generate(k.begin(), k.end(), f32rng);
xnnpack::Buffer<xnn_float16> b(nc);
std::generate(b.begin(), b.end(), f32rng);
const size_t w_elements = nc_stride * kc_stride + nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers =
1 + benchmark::utils::DivideRoundUp<size_t>(
benchmark::utils::GetMaxCacheSize(),
sizeof(xnn_float16) * (w_elements + c_elements));
xnnpack::Buffer<xnn_float16, XNN_ALLOCATION_ALIGNMENT> w(w_elements * num_buffers);
pack(/*groups=*/1, nc, kc, nr, kr, sr,
reinterpret_cast<const uint16_t*>(k.data()),
reinterpret_cast<const uint16_t*>(b.data()), /*scale=*/nullptr,
reinterpret_cast<uint16_t*>(w.data()),
/*extra_bytes=*/0, /*params=*/nullptr);
xnnpack::Buffer<xnn_float16> c(c_elements * num_buffers);
// Prepare minmax parameters.
xnn_f16_minmax_params params;
init_params(&params, static_cast<xnn_float16>(-INFINITY), static_cast<xnn_float16>(INFINITY));
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache
// state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(xnn_float16));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
for (uint32_t n = 0; n < nc; n += nr) {
const uint32_t nb = min(nc - n, nr);
gemm(mb, nb, kc * sizeof(xnn_float16), a.data() + m * kc,
kc * sizeof(xnn_float16),
w.data() + (nc_stride * buffer_index + n) * (kc_stride + 1),
c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(xnn_float16),
nr * sizeof(xnn_float16), &params);
}
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["FLOPS"] =
benchmark::Counter(uint64_t(state.iterations()) * 2 * mc * nc * kc,
benchmark::Counter::kIsRate);
}