274 lines
12 KiB
C++
274 lines
12 KiB
C++
// Copyright 2022 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <random>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "xnnpack.h"
|
|
#include "xnnpack/math.h"
|
|
#include "xnnpack/node-type.h"
|
|
#include "xnnpack/operator.h"
|
|
#include "xnnpack/subgraph.h"
|
|
#include "subgraph-unary-tester.h"
|
|
|
|
using SoftmaxTestF16 =
|
|
UnaryTest<xnn_float16, /*OutputType=*/xnn_float16, /*min_dim=*/1, /*max_dim=*/XNN_MAX_TENSOR_DIMS, /*pad_output=*/true>;
|
|
using SoftmaxTestF32 =
|
|
UnaryTest<float, /*OutputType=*/float, /*min_dim=*/1, /*max_dim=*/XNN_MAX_TENSOR_DIMS, /*pad_output=*/true>;
|
|
|
|
TEST_F(SoftmaxTestF16, define)
|
|
{
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
|
|
input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, 0,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, 1,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0));
|
|
|
|
ASSERT_EQ(subgraph->num_nodes, 1);
|
|
const struct xnn_node* node = &subgraph->nodes[0];
|
|
ASSERT_EQ(node->type, xnn_node_type_softmax);
|
|
ASSERT_EQ(node->num_inputs, 1);
|
|
ASSERT_EQ(node->inputs[0], input_id);
|
|
ASSERT_EQ(node->num_outputs, 1);
|
|
ASSERT_EQ(node->outputs[0], output_id);
|
|
ASSERT_EQ(node->flags, 0);
|
|
}
|
|
|
|
TEST_F(SoftmaxTestF32, define)
|
|
{
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
|
|
input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 1,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0));
|
|
|
|
ASSERT_EQ(subgraph->num_nodes, 1);
|
|
const struct xnn_node* node = &subgraph->nodes[0];
|
|
ASSERT_EQ(node->type, xnn_node_type_softmax);
|
|
ASSERT_EQ(node->num_inputs, 1);
|
|
ASSERT_EQ(node->inputs[0], input_id);
|
|
ASSERT_EQ(node->num_outputs, 1);
|
|
ASSERT_EQ(node->outputs[0], output_id);
|
|
ASSERT_EQ(node->flags, 0);
|
|
}
|
|
|
|
TEST_F(SoftmaxTestF16, matches_operator_api)
|
|
{
|
|
// Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't.
|
|
// However, the range is still narrow enough that single-precision exp doesn't overflow.
|
|
std::uniform_real_distribution<float> f32dist(90.0f, 100.0f);
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
// Call operator API.
|
|
xnn_operator_t op = nullptr;
|
|
const xnn_status status = xnn_create_softmax_nc_f16(/*flags=*/0, &op);
|
|
if (status == xnn_status_unsupported_hardware) {
|
|
GTEST_SKIP();
|
|
}
|
|
|
|
ASSERT_EQ(xnn_status_success, status);
|
|
ASSERT_NE(nullptr, op);
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_reshape_softmax_nc_f16(op, channels, channels, channels, batch_size, /*threadpool=*/nullptr));
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_setup_softmax_nc_f16(op, input.data(), operator_output.data()));
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
|
|
|
|
// Call subgraph API.
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, /*external_id=*/0,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp16, dims.size(), dims.data(), nullptr, /*external_id=*/1,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
xnn_runtime_t runtime = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0));
|
|
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
|
|
ASSERT_NE(nullptr, runtime);
|
|
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
|
|
std::array<xnn_external_value, 2> external = {
|
|
xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
|
|
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
|
|
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
|
|
|
|
for (size_t i = 0; i < num_output_elements; i++) {
|
|
ASSERT_EQ(subgraph_output[i], operator_output[i]) << "element " << i << " / " << num_output_elements;
|
|
}
|
|
}
|
|
|
|
TEST_F(SoftmaxTestF32, matches_operator_api)
|
|
{
|
|
// Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't.
|
|
// However, the range is still narrow enough that single-precision exp doesn't overflow.
|
|
std::uniform_real_distribution<float> f32dist(90.0f, 100.0f);
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
// Call operator API.
|
|
xnn_operator_t op = nullptr;
|
|
const xnn_status status = xnn_create_softmax_nc_f32(/*flags=*/0, &op);
|
|
if (status == xnn_status_unsupported_hardware) {
|
|
GTEST_SKIP();
|
|
}
|
|
|
|
ASSERT_EQ(xnn_status_success, status);
|
|
ASSERT_NE(nullptr, op);
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_reshape_softmax_nc_f32(op, channels, channels, channels, batch_size, /*threadpool=*/nullptr));
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_setup_softmax_nc_f32(op, input.data(), operator_output.data()));
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
|
|
|
|
// Call subgraph API.
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, /*external_id=*/0,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, /*external_id=*/1,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
xnn_runtime_t runtime = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0));
|
|
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
|
|
ASSERT_NE(nullptr, runtime);
|
|
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
|
|
std::array<xnn_external_value, 2> external = {
|
|
xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
|
|
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
|
|
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
|
|
|
|
for (size_t i = 0; i < num_output_elements; i++) {
|
|
ASSERT_EQ(subgraph_output[i], operator_output[i]) << "element " << i << " / " << num_output_elements;
|
|
}
|
|
}
|
|
|
|
TEST_F(SoftmaxTestF32, reshape_output)
|
|
{
|
|
// Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't.
|
|
// However, the range is still narrow enough that single-precision exp doesn't overflow.
|
|
std::uniform_real_distribution<float> f32dist(90.0f, 100.0f);
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
|
|
input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 1,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_define_softmax(subgraph, input_id, output_id, /*flags=*/0));
|
|
|
|
xnn_runtime_t runtime = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
|
|
ASSERT_NE(nullptr, runtime);
|
|
|
|
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
|
|
|
|
const std::array<xnn_external_value, 2> external{{
|
|
xnn_external_value{input_id, input.data()},
|
|
xnn_external_value{output_id, subgraph_output.data()}
|
|
}};
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
|
|
|
|
dims[0] += 4;
|
|
ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, dims.size(), dims.data()));
|
|
const struct xnn_node* node = &subgraph->nodes[0];
|
|
ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required);
|
|
const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape;
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
ASSERT_EQ(dims[i], output_shape->dim[i]);
|
|
}
|
|
|
|
dims[0] -= 4;
|
|
ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, dims.size(), dims.data()));
|
|
ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_success);
|
|
output_shape = &runtime->values[node->outputs[0]].shape;
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
ASSERT_EQ(dims[i], output_shape->dim[i]);
|
|
}
|
|
}
|