sglang_v0.5.2/flashinfer_0.3.1/3rdparty/cutlass/include/cute/atom/partitioner.hpp

111 lines
3.5 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/cutlass.h"
#if defined(__CUDACC_RTC__)
#include CUDA_STD_HEADER(type_traits)
#else
#include <type_traits>
#endif
#include <cute/config.hpp>
#include <cute/tensor.hpp>
namespace cute {
//
// A generic tiling of thread-value layouts
//
template <class Layout_TV_, // (tid,vid) -> coord [Need not be 2D...]
class Tiler_MN_> // coord space
struct TV_Tiler
{
using Tiler_MN = Tiler_MN_;
using TiledLayout_TV = Layout_TV_;
// Tile a tensor or a layout from shape
// (M,N,...)
// to shape
// ((ThrV,FrgV),(RestM,RestN,...))
// where
// ThrV: The threads local to a tile.
// FrgV: The values local to a tile.
// RestM: The values tiled in M.
// RestN: The values tiled in N.
template <class Tensor>
CUTE_HOST_DEVICE constexpr static
auto
apply(Tensor&& tensor)
{
// If Layout_TV and Tiler_MN were composable in general, then this won't be needed!
// ((thr_id,val_id),(RestM,RestN,...))
return zipped_divide(tensor, Tiler_MN{}).compose(TiledLayout_TV{}, _);
}
template <class SliceCoord>
struct TV_Partitioner
{
SliceCoord coord_;
template <class TargetTensor>
CUTE_HOST_DEVICE
auto
partition(TargetTensor&& target) {
Tensor thr_tensor = make_tensor(static_cast<TargetTensor&&>(target).data(), apply(target.layout()));
return thr_tensor(coord_, repeat<rank_v<TargetTensor>>(_));
}
};
template <class SliceCoord>
CUTE_HOST_DEVICE static
auto
get_slice(SliceCoord const& coord)
{
return TV_Partitioner<SliceCoord>{coord};
}
};
template <class Layout_TV,
class Tiler_MN>
CUTE_HOST_DEVICE
auto
make_tiler_impl(Layout_TV const&,
Tiler_MN const&)
{
return TV_Tiler<Layout_TV, Tiler_MN>{};
}
}