452 lines
15 KiB
C++
452 lines
15 KiB
C++
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "xnnpack/math.h"
|
|
#include "xnnpack/microfnptr.h"
|
|
#include "xnnpack/microparams.h"
|
|
#include "xnnpack/buffer.h"
|
|
#include "replicable_random_device.h"
|
|
|
|
class SpMMMicrokernelTester {
|
|
public:
|
|
SpMMMicrokernelTester& mr(size_t mr) {
|
|
this->mr_ = mr;
|
|
return *this;
|
|
}
|
|
|
|
size_t mr() const {
|
|
return this->mr_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& nr(size_t nr) {
|
|
this->nr_ = nr;
|
|
return *this;
|
|
}
|
|
|
|
size_t nr() const {
|
|
return this->nr_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& m(size_t m) {
|
|
this->m_ = m;
|
|
return *this;
|
|
}
|
|
|
|
size_t m() const {
|
|
return this->m_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& n(size_t n) {
|
|
this->n_ = n;
|
|
return *this;
|
|
}
|
|
|
|
size_t n() const {
|
|
return this->n_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& k(size_t k) {
|
|
this->k_ = k;
|
|
return *this;
|
|
}
|
|
|
|
size_t k() const {
|
|
return this->k_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& output_stride(size_t output_stride) {
|
|
assert(output_stride != 0);
|
|
this->output_stride_ = output_stride;
|
|
return *this;
|
|
}
|
|
|
|
size_t output_stride() const {
|
|
if (this->output_stride_ == 0) {
|
|
return m();
|
|
} else {
|
|
assert(this->output_stride_ >= m());
|
|
return this->output_stride_;
|
|
}
|
|
}
|
|
|
|
SpMMMicrokernelTester& sparsity(float sparsity) {
|
|
this->sparsity_ = sparsity;
|
|
return *this;
|
|
}
|
|
|
|
float sparsity() const {
|
|
return this->sparsity_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& qmin(uint8_t qmin) {
|
|
this->qmin_ = qmin;
|
|
return *this;
|
|
}
|
|
|
|
uint8_t qmin() const {
|
|
return this->qmin_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& qmax(uint8_t qmax) {
|
|
this->qmax_ = qmax;
|
|
return *this;
|
|
}
|
|
|
|
uint8_t qmax() const {
|
|
return this->qmax_;
|
|
}
|
|
|
|
SpMMMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_f32_spmm_minmax_ukernel_fn spmm, xnn_init_f32_minmax_params_fn init_params) const {
|
|
ASSERT_GE(m(), 1);
|
|
ASSERT_GE(n(), 1);
|
|
ASSERT_GE(k(), 1);
|
|
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_real_distribution<float> f32dist;
|
|
std::uniform_real_distribution<float> pdist;
|
|
|
|
xnnpack::Buffer<float, XNN_ALLOCATION_ALIGNMENT> input(k() * m());
|
|
// Think of b as (n/nr + n % nr) x k, expansion happens later.
|
|
const size_t ncols = n() / nr() + n() % nr();
|
|
xnnpack::Buffer<float> b(ncols * k());
|
|
xnnpack::Buffer<float> bias(n());
|
|
// Number of non-zero weights per N (output channel).
|
|
xnnpack::Buffer<uint32_t> nmap(n());
|
|
// Mapping from index of non-zero weight to increment of K (input channel) following this index.
|
|
// Micro-kernel can access one element beyond w and dmap for software pipelining.
|
|
xnnpack::Buffer<int32_t> dmap(n() * k() + 1);
|
|
xnnpack::Buffer<float> w(n() * k() + n() + 1);
|
|
xnnpack::Buffer<float> output((n() - 1) * output_stride() + m());
|
|
xnnpack::Buffer<float> output_ref(n() * m());
|
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
std::generate(b.begin(), b.end(), [&]() { return f32dist(rng); });
|
|
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
|
|
std::fill(nmap.begin(), nmap.end(), 0);
|
|
std::fill(dmap.begin(), dmap.end(), 0);
|
|
std::fill(w.begin(), w.end(), 0.0f);
|
|
|
|
for (float& b_value : b) {
|
|
if (pdist(rng) <= sparsity()) {
|
|
b_value = 0.0f;
|
|
}
|
|
}
|
|
|
|
uint32_t nnz = 0;
|
|
uint32_t wcnt = 0;
|
|
size_t last_kk = 0;
|
|
bool first_nzz = true;
|
|
size_t first_kk = 0;
|
|
for (size_t nn = 0; nn < n() / nr(); nn++) {
|
|
for (size_t i = 0; i < nr(); ++i)
|
|
w[wcnt++] = bias[nr() * nn + i];
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (b[nn * k() + kk] != 0.0f) {
|
|
// Every non-zero actually corresponds to nr adjacent non-zeros.
|
|
for (size_t i = 0; i < nr(); ++i)
|
|
w[wcnt++] = b[nn * k() + kk] + static_cast<float>(i);
|
|
// Skip the very first non-zero weight as we record only the difference.
|
|
if (first_nzz) {
|
|
first_kk = kk;
|
|
} else {
|
|
const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
|
|
dmap[nnz++] = increment;
|
|
}
|
|
last_kk = kk;
|
|
first_nzz = false;
|
|
nmap[nn] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// now we've constructed the matrix for the blocked part and switch to the
|
|
// leftovers, which we do as nr=1 always.
|
|
for (size_t nn = n() / nr(); nn < ncols; nn++) {
|
|
w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (b[nn * k() + kk] != 0.0f) {
|
|
// Every non-zero actually corresponds to nr adjacent non-zeros.
|
|
w[wcnt++] = b[nn * k() + kk];
|
|
// Skip the very first non-zero weight as we record only the difference.
|
|
if (first_nzz) {
|
|
first_kk = kk;
|
|
} else {
|
|
const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
|
|
dmap[nnz++] = increment;
|
|
}
|
|
last_kk = kk;
|
|
first_nzz = false;
|
|
nmap[nn] += 1;
|
|
}
|
|
}
|
|
}
|
|
// In the end, we must return input pointer to the initial value.
|
|
const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(float));
|
|
dmap[nnz++] = increment;
|
|
|
|
// Generate expanded b which will be used in reference calculation.
|
|
// Everywhere there is input non-zero in the original we copy it and add an
|
|
// adjacent non-zero with incremented weight value.
|
|
xnnpack::Buffer<float> b_full(n() * k());
|
|
if (nr() == 1) {
|
|
std::copy(b.begin(), b.end(), b_full.begin());
|
|
} else {
|
|
std::fill(b_full.begin(), b_full.end(), 0.0f);
|
|
for (size_t nn = 0; nn < n() / nr(); nn++) {
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (b[nn * k() + kk] != 0.0f) {
|
|
for (size_t i = 0; i < nr(); ++i)
|
|
b_full[nr() * nn * k() + i * k() + kk] = b[nn * k() + kk] + static_cast<float>(i);
|
|
}
|
|
}
|
|
}
|
|
for (size_t nn = n() / nr(); nn < ncols; nn++) {
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (b[nn * k() + kk] != 0.0f) {
|
|
b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t oc = 0; oc < n(); oc++) {
|
|
for (size_t pxb = 0; pxb < m(); pxb++) {
|
|
output_ref[oc * m() + pxb] = bias[oc];
|
|
for (size_t ic = 0; ic < k(); ic++) {
|
|
output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
|
|
const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
|
|
|
|
// Clamp reference results.
|
|
for (float& output_value : output_ref) {
|
|
output_value = std::min(std::max(output_value, output_min), output_max);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
xnn_f32_minmax_params params;
|
|
init_params(¶ms, output_min, output_max);
|
|
|
|
spmm(m() * sizeof(float), n(),
|
|
input.data() + first_kk * m(),
|
|
w.data(), dmap.data(), nmap.data(),
|
|
output.data(), output_stride() * sizeof(float),
|
|
¶ms);
|
|
|
|
// Validate micro-kernel outputs.
|
|
for (size_t i = 0; i < m(); i++) {
|
|
for (size_t j = 0; j < n(); j++) {
|
|
ASSERT_NEAR(
|
|
output[j * output_stride() + i],
|
|
output_ref[j * m() + i],
|
|
std::abs(output_ref[j * m() + i]) * 1.0e-6f)
|
|
<< "at M index " << i << " / " << m() << " (tile " << mr() << ")"
|
|
<< ", N index " << j << " / " << n() << " (tile " << nr() << ")"
|
|
<< ", K = " << k();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f16_spmm_minmax_ukernel_fn spmm, xnn_init_f16_minmax_params_fn init_params) const {
|
|
ASSERT_GE(m(), 1);
|
|
ASSERT_GE(n(), 1);
|
|
ASSERT_GE(k(), 1);
|
|
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_real_distribution<float> f32dist;
|
|
std::uniform_real_distribution<float> pdist;
|
|
|
|
xnnpack::Buffer<xnn_float16, XNN_ALLOCATION_ALIGNMENT> input(k() * m());
|
|
// Think of b as (n/nr + n % nr) x k, expansion happens later.
|
|
const size_t ncols = n() / nr() + n() % nr();
|
|
xnnpack::Buffer<xnn_float16> b(ncols * k());
|
|
xnnpack::Buffer<xnn_float16> bias(n());
|
|
// Number of non-zero weights per N (output channel).
|
|
xnnpack::Buffer<uint32_t> nmap(n());
|
|
// Mapping from index of non-zero weight to increment of K (input channel) following this index.
|
|
// Micro-kernel can access one element beyond w and dmap for software pipelining.
|
|
xnnpack::Buffer<int32_t> dmap(n() * k() + 1);
|
|
xnnpack::Buffer<xnn_float16> w(n() * k() + n() + 1);
|
|
xnnpack::Buffer<xnn_float16> output((n() - 1) * output_stride() + m());
|
|
xnnpack::Buffer<float> output_ref(n() * m());
|
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
std::generate(b.begin(), b.end(), [&]() { return f32dist(rng); });
|
|
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
|
|
std::fill(nmap.begin(), nmap.end(), 0);
|
|
std::fill(dmap.begin(), dmap.end(), 0);
|
|
std::fill(w.begin(), w.end(), 0);
|
|
|
|
for (xnn_float16& b_value : b) {
|
|
if (pdist(rng) <= sparsity()) {
|
|
b_value = 0;
|
|
}
|
|
}
|
|
|
|
uint32_t nnz = 0;
|
|
uint32_t wcnt = 0;
|
|
size_t last_kk = 0;
|
|
bool first_nzz = true;
|
|
size_t first_kk = 0;
|
|
for (size_t nn = 0; nn < n() / nr(); nn++) {
|
|
for (size_t i = 0; i < nr(); ++i)
|
|
w[wcnt++] = bias[nr() * nn + i];
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (!xnn_float16_is_zero(b[nn * k() + kk])) {
|
|
// Every non-zero actually corresponds to nr adjacent non-zeros.
|
|
for (size_t i = 0; i < nr(); ++i)
|
|
w[wcnt++] = xnn_float16(b[nn * k() + kk]) + static_cast<xnn_float16>(i);
|
|
// Skip the very first non-zero weight as we record only the difference.
|
|
if (first_nzz) {
|
|
first_kk = kk;
|
|
} else {
|
|
const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(xnn_float16));
|
|
dmap[nnz++] = increment;
|
|
}
|
|
last_kk = kk;
|
|
first_nzz = false;
|
|
nmap[nn] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// now we've constructed the matrix for the blocked part and switch to the
|
|
// leftovers, which we do as nr=1 always.
|
|
for (size_t nn = n() / nr(); nn < ncols; nn++) {
|
|
w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (!xnn_float16_is_zero(b[nn * k() + kk])) {
|
|
// Every non-zero actually corresponds to nr adjacent non-zeros.
|
|
w[wcnt++] = b[nn * k() + kk];
|
|
// Skip the very first non-zero weight as we record only the difference.
|
|
if (first_nzz) {
|
|
first_kk = kk;
|
|
} else {
|
|
const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(xnn_float16));
|
|
dmap[nnz++] = increment;
|
|
}
|
|
last_kk = kk;
|
|
first_nzz = false;
|
|
nmap[nn] += 1;
|
|
}
|
|
}
|
|
}
|
|
// In the end, we must return input pointer to the initial value.
|
|
const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(xnn_float16));
|
|
dmap[nnz++] = increment;
|
|
|
|
// Generate expanded b which will be used in reference calculation.
|
|
// Everywhere there is input non-zero in the original we copy it and add an
|
|
// adjacent non-zero with incremented weight value.
|
|
xnnpack::Buffer<xnn_float16> b_full(n() * k());
|
|
if (nr() == 1) {
|
|
std::copy(b.begin(), b.end(), b_full.begin());
|
|
} else {
|
|
for (size_t nn = 0; nn < n() / nr(); nn++) {
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (b[nn * k() + kk] != 0.0f) {
|
|
for (size_t i = 0; i < nr(); ++i)
|
|
b_full[nr() * nn * k() + i * k() + kk] =
|
|
b[nn * k() + kk] + static_cast<xnn_float16>(i);
|
|
}
|
|
}
|
|
}
|
|
for (size_t nn = n() / nr(); nn < ncols; nn++) {
|
|
for (size_t kk = 0; kk < k(); kk++) {
|
|
if (b[nn * k() + kk] != 0.0f) {
|
|
b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t oc = 0; oc < n(); oc++) {
|
|
for (size_t pxb = 0; pxb < m(); pxb++) {
|
|
output_ref[oc * m() + pxb] = bias[oc];
|
|
for (size_t ic = 0; ic < k(); ic++) {
|
|
output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
|
|
const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
|
|
|
|
// Clamp reference results.
|
|
for (float& output_value : output_ref) {
|
|
output_value = std::min(std::max(output_value, output_min), output_max);
|
|
}
|
|
|
|
// Prepare parameters.
|
|
xnn_f16_minmax_params params;
|
|
init_params(¶ms, static_cast<xnn_float16>(output_min), static_cast<xnn_float16>(output_max));
|
|
|
|
spmm(m() * sizeof(xnn_float16), n(),
|
|
input.data() + first_kk * m(),
|
|
w.data(), dmap.data(), nmap.data(),
|
|
output.data(), output_stride() * sizeof(xnn_float16),
|
|
¶ms);
|
|
|
|
// Validate micro-kernel outputs.
|
|
for (size_t i = 0; i < m(); i++) {
|
|
for (size_t j = 0; j < n(); j++) {
|
|
ASSERT_NEAR(
|
|
output[j * output_stride() + i],
|
|
output_ref[j * m() + i],
|
|
std::max(1.0e-4f, std::abs(output_ref[j * m() + i]) * 1.0e-2f))
|
|
<< "at M index " << i << " / " << m() << " (tile " << mr() << ")"
|
|
<< ", N index " << j << " / " << n() << " (tile " << nr() << ")"
|
|
<< ", K = " << k();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t mr_{1};
|
|
size_t nr_{1};
|
|
size_t m_{1};
|
|
size_t n_{1};
|
|
size_t k_{1};
|
|
size_t output_stride_{0};
|
|
float sparsity_{0.5f};
|
|
uint8_t qmin_{0};
|
|
uint8_t qmax_{255};
|
|
size_t iterations_{1};
|
|
};
|