sglang_v0.5.2/sglang/docs/developer_guide/bench_serving.md

335 lines
12 KiB
Markdown

## Bench Serving Guide
This guide explains how to benchmark online serving throughput and latency using `python -m sglang.bench_serving`. It supports multiple inference backends via OpenAI-compatible and native endpoints, and produces both console metrics and optional JSONL outputs.
### What it does
- Generates synthetic or dataset-driven prompts and submits them to a target serving endpoint
- Measures throughput, time-to-first-token (TTFT), inter-token latency (ITL), per-request end-to-end latency, and more
- Supports streaming or non-streaming modes, rate control, and concurrency limits
### Supported backends and endpoints
- `sglang` / `sglang-native`: `POST /generate`
- `sglang-oai`, `vllm`, `lmdeploy`: `POST /v1/completions`
- `sglang-oai-chat`, `vllm-chat`, `lmdeploy-chat`: `POST /v1/chat/completions`
- `trt` (TensorRT-LLM): `POST /v2/models/ensemble/generate_stream`
- `gserver`: Custom server (Not Implemented yet in this script)
- `truss`: `POST /v1/models/model:predict`
If `--base-url` is provided, requests are sent to it. Otherwise, `--host` and `--port` are used. When `--model` is not provided, the script will attempt to query `GET /v1/models` for an available model ID (OpenAI-compatible endpoints).
### Prerequisites
- Python 3.8+
- Dependencies typically used by this script: `aiohttp`, `numpy`, `requests`, `tqdm`, `transformers`, and for some datasets `datasets`, `pillow`, `pybase64`. Install as needed.
- An inference server running and reachable via the endpoints above
- If your server requires authentication, set environment variable `OPENAI_API_KEY` (used as `Authorization: Bearer <key>`)
### Quick start
Run a basic benchmark against an sglang server exposing `/generate`:
```bash
python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct
```
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--num-prompts 1000 \
--model meta-llama/Llama-3.1-8B-Instruct
```
Or, using an OpenAI-compatible endpoint (completions):
```bash
python3 -m sglang.bench_serving \
--backend vllm \
--base-url http://127.0.0.1:8000 \
--num-prompts 1000 \
--model meta-llama/Llama-3.1-8B-Instruct
```
### Datasets
Select with `--dataset-name`:
- `sharegpt` (default): loads ShareGPT-style pairs; optionally restrict with `--sharegpt-context-len` and override outputs with `--sharegpt-output-len`
- `random`: random text lengths; sampled from ShareGPT token space
- `random-ids`: random token ids (can lead to gibberish)
- `random-image`: generates random images and wraps them in chat messages; supports custom resolutions via 'heightxwidth' format
- `generated-shared-prefix`: synthetic dataset with shared long system prompts and short questions
- `mmmu`: samples from MMMU (Math split) and includes images
Common dataset flags:
- `--num-prompts N`: number of requests
- `--random-input-len`, `--random-output-len`, `--random-range-ratio`: for random/random-ids/random-image
- `--random-image-num-images`, `--random-image-resolution`: for random-image dataset (supports presets 1080p/720p/360p or custom 'heightxwidth' format)
- `--apply-chat-template`: apply tokenizer chat template when constructing prompts
- `--dataset-path PATH`: file path for ShareGPT json; if blank and missing, it will be downloaded and cached
Generated Shared Prefix flags (for `generated-shared-prefix`):
- `--gsp-num-groups`
- `--gsp-prompts-per-group`
- `--gsp-system-prompt-len`
- `--gsp-question-len`
- `--gsp-output-len`
Random Image dataset flags (for `random-image`):
- `--random-image-num-images`: Number of images per request
- `--random-image-resolution`: Image resolution; supports presets (1080p, 720p, 360p) or custom 'heightxwidth' format (e.g., 1080x1920, 512x768)
### Examples
1. To benchmark random-image dataset with 3 images per request, 500 prompts, 512 input length, and 512 output length, you can run:
```bash
python -m sglang.launch_server --model-path Qwen/Qwen2.5-VL-3B-Instruct --disable-radix-cache
```
```bash
python -m sglang.bench_serving \
--backend sglang-oai-chat \
--dataset-name random-image \
--num-prompts 500 \
--random-image-num-images 3 \
--random-image-resolution 720p \
--random-input-len 512 \
--random-output-len 512
```
2. To benchmark random dataset with 3000 prompts, 1024 input length, and 1024 output length, you can run:
```bash
python -m sglang.launch_server --model-path Qwen/Qwen2.5-3B-Instruct
```
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--dataset-name random \
--num-prompts 3000 \
--random-input 1024 \
--random-output 1024 \
--random-range-ratio 0.5
```
### Choosing model and tokenizer
- `--model` is required unless the backend exposes `GET /v1/models`, in which case the first model ID is auto-selected.
- `--tokenizer` defaults to `--model`. Both can be HF model IDs or local paths.
- For ModelScope workflows, setting `SGLANG_USE_MODELSCOPE=true` enables fetching via ModelScope (weights are skipped for speed).
- If your tokenizer lacks a chat template, the script warns because token counting can be less robust for gibberish outputs.
### Rate, concurrency, and streaming
- `--request-rate`: requests per second. `inf` sends all immediately (burst). Non-infinite rate uses a Poisson process for arrival times.
- `--max-concurrency`: caps concurrent in-flight requests regardless of arrival rate.
- `--disable-stream`: switch to non-streaming mode when supported; TTFT then equals total latency for chat completions.
### Other key options
- `--output-file FILE.jsonl`: append JSONL results to file; auto-named if unspecified
- `--output-details`: include per-request arrays (generated texts, errors, ttfts, itls, input/output lens)
- `--extra-request-body '{"top_p":0.9,"temperature":0.6}'`: merged into payload (sampling params, etc.)
- `--disable-ignore-eos`: pass through EOS behavior (varies by backend)
- `--warmup-requests N`: run warmup requests with short output first (default 1)
- `--flush-cache`: call `/flush_cache` (sglang) before main run
- `--profile`: call `/start_profile` and `/stop_profile` (requires server to enable profiling, e.g., `SGLANG_TORCH_PROFILER_DIR`)
- `--lora-name name1 name2 ...`: randomly pick one per request and pass to backend (e.g., `lora_path` for sglang)
- `--tokenize-prompt`: send integer IDs instead of text (currently supports `--backend sglang` only)
### Authentication
If your target endpoint requires OpenAI-style auth, set:
```bash
export OPENAI_API_KEY=sk-...yourkey...
```
The script will add `Authorization: Bearer $OPENAI_API_KEY` automatically for OpenAI-compatible routes.
### Metrics explained
Printed after each run:
- Request throughput (req/s)
- Input token throughput (tok/s)
- Output token throughput (tok/s)
- Total token throughput (tok/s)
- Concurrency: aggregate time of all requests divided by wall time
- End-to-End Latency (ms): mean/median/std/p99 per-request total latency
- Time to First Token (TTFT, ms): mean/median/std/p99 for streaming mode
- Inter-Token Latency (ITL, ms): mean/median/std/p95/p99/max between tokens
- TPOT (ms): Token processing time after first token, i.e., `(latency - ttft)/(tokens-1)`
- Accept length (sglang-only, if available): speculative decoding accept length
The script also retokenizes generated text with the configured tokenizer and reports "retokenized" counts.
### JSONL output format
When `--output-file` is set, one JSON object is appended per run. Base fields:
- Arguments summary: backend, dataset, request_rate, max_concurrency, etc.
- Duration and totals: completed, total_input_tokens, total_output_tokens, retokenized totals
- Throughputs and latency statistics as printed in the console
- `accept_length` when available (sglang)
With `--output-details`, an extended object also includes arrays:
- `input_lens`, `output_lens`
- `ttfts`, `itls` (per request: ITL arrays)
- `generated_texts`, `errors`
### End-to-end examples
1) sglang native `/generate` (streaming):
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--model meta-llama/Llama-3.1-8B-Instruct \
--dataset-name random \
--random-input-len 1024 --random-output-len 1024 --random-range-ratio 0.5 \
--num-prompts 2000 \
--request-rate 100 \
--max-concurrency 512 \
--output-file sglang_random.jsonl --output-details
```
2) OpenAI-compatible Completions (e.g., vLLM):
```bash
python3 -m sglang.bench_serving \
--backend vllm \
--base-url http://127.0.0.1:8000 \
--model meta-llama/Llama-3.1-8B-Instruct \
--dataset-name sharegpt \
--num-prompts 1000 \
--sharegpt-output-len 256
```
3) OpenAI-compatible Chat Completions (streaming):
```bash
python3 -m sglang.bench_serving \
--backend vllm-chat \
--base-url http://127.0.0.1:8000 \
--model meta-llama/Llama-3.1-8B-Instruct \
--dataset-name random \
--num-prompts 500 \
--apply-chat-template
```
4) Random images (VLM) with chat template:
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--model your-vlm-model \
--dataset-name random-image \
--random-image-num-images 2 \
--random-image-resolution 720p \
--random-input-len 128 --random-output-len 256 \
--num-prompts 200 \
--apply-chat-template
```
4a) Random images with custom resolution:
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--model your-vlm-model \
--dataset-name random-image \
--random-image-num-images 1 \
--random-image-resolution 512x768 \
--random-input-len 64 --random-output-len 128 \
--num-prompts 100 \
--apply-chat-template
```
5) Generated shared prefix (long system prompts + short questions):
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--model meta-llama/Llama-3.1-8B-Instruct \
--dataset-name generated-shared-prefix \
--gsp-num-groups 64 --gsp-prompts-per-group 16 \
--gsp-system-prompt-len 2048 --gsp-question-len 128 --gsp-output-len 256 \
--num-prompts 1024
```
6) Tokenized prompts (ids) for strict length control (sglang only):
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--model meta-llama/Llama-3.1-8B-Instruct \
--dataset-name random \
--tokenize-prompt \
--random-input-len 2048 --random-output-len 256 --random-range-ratio 0.2
```
7) Profiling and cache flush (sglang):
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--model meta-llama/Llama-3.1-8B-Instruct \
--profile \
--flush-cache
```
8) TensorRT-LLM streaming endpoint:
```bash
python3 -m sglang.bench_serving \
--backend trt \
--base-url http://127.0.0.1:8000 \
--model your-trt-llm-model \
--dataset-name random \
--num-prompts 100 \
--disable-ignore-eos
```
9) Evaluating large-scale KVCache sharing with mooncake trace (sglang only):
```bash
python3 -m sglang.bench_serving \
--backend sglang \
--host 127.0.0.1 --port 30000 \
--model mode-name \
--dataset-name mooncake \
--mooncake-slowdown-factor 1.0 \
--mooncake-num-rounds 1000 \
--mooncake-workload conversation|mooncake|agent|synthetic
--use-trace-timestamps true \
--random-output-len 256
```
### Troubleshooting
- All requests failed: verify `--backend`, server URL/port, `--model`, and authentication. Check warmup errors printed by the script.
- Throughput seems too low: adjust `--request-rate` and `--max-concurrency`; verify server batch size/scheduling; ensure streaming is enabled if appropriate.
- Token counts look odd: prefer chat/instruct models with proper chat templates; otherwise tokenization of gibberish may be inconsistent.
- Random-image/MMMU datasets: ensure you installed extra deps (`pillow`, `datasets`, `pybase64`).
- Authentication errors (401/403): set `OPENAI_API_KEY` or disable auth on your server.
### Notes
- The script raises the file descriptor soft limit (`RLIMIT_NOFILE`) to help with many concurrent connections.
- For sglang, `/get_server_info` is queried post-run to report speculative decoding accept length when available.