sglang_v0.5.2/sglang/docs/platforms/amd_gpu.md

159 lines
5.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# AMD GPUs
This document describes how run SGLang on AMD GPUs. If you encounter issues or have questions, please [open an issue](https://github.com/sgl-project/sglang/issues).
## System Configuration
When using AMD GPUs (such as MI300X), certain system-level optimizations help ensure stable performance. Here we take MI300X as an example. AMD provides official documentation for MI300X optimization and system tuning:
- [AMD MI300X Tuning Guides](https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/index.html)
- [LLM inference performance validation on AMD Instinct MI300X](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html)
- [AMD Instinct MI300X System Optimization](https://rocm.docs.amd.com/en/latest/how-to/system-optimization/mi300x.html)
- [AMD Instinct MI300X Workload Optimization](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference-optimization/workload.html)
- [Supercharge DeepSeek-R1 Inference on AMD Instinct MI300X](https://rocm.blogs.amd.com/artificial-intelligence/DeepSeekR1-Part2/README.html)
**NOTE:** We strongly recommend reading these docs and guides entirely to fully utilize your system.
Below are a few key settings to confirm or enable for SGLang:
### Update GRUB Settings
In `/etc/default/grub`, append the following to `GRUB_CMDLINE_LINUX`:
```text
pci=realloc=off iommu=pt
```
Afterward, run `sudo update-grub` (or your distros equivalent) and reboot.
### Disable NUMA Auto-Balancing
```bash
sudo sh -c 'echo 0 > /proc/sys/kernel/numa_balancing'
```
You can automate or verify this change using [this helpful script](https://github.com/ROCm/triton/blob/rocm_env/scripts/amd/env_check.sh).
Again, please go through the entire documentation to confirm your system is using the recommended configuration.
## Install SGLang
You can install SGLang using one of the methods below.
### Install from Source
```bash
# Use the last release branch
git clone -b v0.5.2 https://github.com/sgl-project/sglang.git
cd sglang
# Compile sgl-kernel
pip install --upgrade pip
cd sgl-kernel
python setup_rocm.py install
# Install sglang python package
cd ..
pip install -e "python[all_hip]"
```
### Install Using Docker (Recommended)
The docker images are available on Docker Hub at [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile.rocm](https://github.com/sgl-project/sglang/tree/main/docker).
The steps below show how to build and use an image.
1. Build the docker image.
If you use pre-built images, you can skip this step and replace `sglang_image` with the pre-built image names in the steps below.
```bash
docker build -t sglang_image -f Dockerfile.rocm .
```
2. Create a convenient alias.
```bash
alias drun='docker run -it --rm --network=host --privileged --device=/dev/kfd --device=/dev/dri \
--ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
-v $HOME/dockerx:/dockerx \
-v /data:/data'
```
If you are using RDMA, please note that:
- `--network host` and `--privileged` are required by RDMA. If you don't need RDMA, you can remove them.
- You may need to set `NCCL_IB_GID_INDEX` if you are using RoCE, for example: `export NCCL_IB_GID_INDEX=3`.
3. Launch the server.
**NOTE:** Replace `<secret>` below with your [huggingface hub token](https://huggingface.co/docs/hub/en/security-tokens).
```bash
drun -p 30000:30000 \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HF_TOKEN=<secret>" \
sglang_image \
python3 -m sglang.launch_server \
--model-path NousResearch/Meta-Llama-3.1-8B \
--host 0.0.0.0 \
--port 30000
```
4. To verify the utility, you can run a benchmark in another terminal or refer to [other docs](https://docs.sglang.ai/backend/openai_api_completions.html) to send requests to the engine.
```bash
drun sglang_image \
python3 -m sglang.bench_serving \
--backend sglang \
--dataset-name random \
--num-prompts 4000 \
--random-input 128 \
--random-output 128
```
With your AMD system properly configured and SGLang installed, you can now fully leverage AMD hardware to power SGLangs machine learning capabilities.
## Examples
### Running DeepSeek-V3
The only difference when running DeepSeek-V3 is in how you start the server. Here's an example command:
```bash
drun -p 30000:30000 \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--ipc=host \
--env "HF_TOKEN=<secret>" \
sglang_image \
python3 -m sglang.launch_server \
--model-path deepseek-ai/DeepSeek-V3 \ # <- here
--tp 8 \
--trust-remote-code \
--host 0.0.0.0 \
--port 30000
```
[Running DeepSeek-R1 on a single NDv5 MI300X VM](https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/running-deepseek-r1-on-a-single-ndv5-mi300x-vm/4372726) could also be a good reference.
### Running Llama3.1
Running Llama3.1 is nearly identical to running DeepSeek-V3. The only difference is in the model specified when starting the server, shown by the following example command:
```bash
drun -p 30000:30000 \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--ipc=host \
--env "HF_TOKEN=<secret>" \
sglang_image \
python3 -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3.1-8B-Instruct \ # <- here
--tp 8 \
--trust-remote-code \
--host 0.0.0.0 \
--port 30000
```
### Warmup Step
When the server displays `The server is fired up and ready to roll!`, it means the startup is successful.