embed-bge-m3/FlagEmbedding/research/Long_LLM/activation_beacon/README.md

99 lines
4.0 KiB
Markdown

# Activation-Beacon
[Activation Beacon](https://arxiv.org/abs/2401.03462) is a plug-in module to transformer-based LLMs that enables effective, efficient, and flexible compression of long contexts.
This folder contains the newer code for activation beacon. It supports more LLMs, including Mistral, Llama-3, and Qwen-2. It also supports more features, including **Deepspeed Zero3 training**, **Flash-Attention-2**, adding **chat template** in training and inference, and **evaluating on more tasks**. However, code in this folder are under development and subject to change in the future.
## Environment
```bash
conda create beacon python=3.10.14
conda activate beacon
# You may need to adjust the cuda version
conda install pytorch pytorch-cuda=12.1 -c pytorch -c nvidia
pip install transformers deepspeed accelerate datasets peft pandas seaborn rouge fuzzywuzzy jieba python-Levenshtein
pip install flash-attn --no-build-isolation
```
## Usage
```python
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "namespace-Pt/beacon-qwen-2-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
)
model = model.cuda().eval()
with torch.no_grad():
# short context
messages = [{"role": "user", "content": "Tell me about yourself."}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=50)
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Output: {repr(tokenizer.decode(outputs[0], skip_special_tokens=True))}")
# reset memory before new generation task
model.memory.reset()
# long context
with open("data/toy/infbench.json", encoding="utf-8") as f:
example = json.load(f)
messages = [{"role": "user", "content": example["context"]}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:]
print("*"*20)
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Answers: {example['answer']}")
print(f"Prediction: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
```
**NOTE**: It's okay to see warnings like `This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (32768). Depending on the model, you may observe exceptions, performance degradation, or nothing at all.` Just ignore it.
## Data
You should download the data for fine-tuning & evaluation then untar the file at anywhere you prefer, e.g. `/data`:
```bash
# feel free to alternate /data to your prefered location
wget https://huggingface.co/datasets/namespace-Pt/projects/resolve/main/long-llm.tar.gz?download=true -O /data/long-llm.tar.gz
cd /data
tar -xzvf long-llm.tar.gz
```
**IMPORTANT NOTE**
For any path specified for `train_data` and `eval_data`: if it is prefixed with `long-llm:`, it will be solved to the relative path against [`data_root`](./src/args.py).
- e.g. `long-llm:lm/pg19.json` becomes `${data_root}/lm/pg19.json`
- you can modify the default value of [`data_root`](./src/args.py), so that you don't need to type it for each command.
## Training
See [training section](./examples/training.md).
## Evaluation
See [evaluation section](./examples/evaluation.md).
## Citation
If you find this repository useful, please give us a star ⭐.
To cite our work:
```
@misc{zhang2024soaring,
title={Soaring from 4K to 400K: Extending LLM's Context with Activation Beacon},
author={Peitian Zhang and Zheng Liu and Shitao Xiao and Ninglu Shao and Qiwei Ye and Zhicheng Dou},
year={2024},
eprint={2401.03462},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```