50 lines
2.1 KiB
Markdown
50 lines
2.1 KiB
Markdown
# Rerank Models
|
||
|
||
SGLang offers comprehensive support for rerank models by incorporating optimized serving frameworks with a flexible programming interface. This setup enables efficient processing of cross-encoder reranking tasks, improving the accuracy and relevance of search result ordering. SGLang’s design ensures high throughput and low latency during reranker model deployment, making it ideal for semantic-based result refinement in large-scale retrieval systems.
|
||
|
||
```{important}
|
||
They are executed with `--is-embedding` and some may require `--trust-remote-code`
|
||
```
|
||
|
||
## Example Launch Command
|
||
|
||
```shell
|
||
python3 -m sglang.launch_server \
|
||
--model-path BAAI/bge-reranker-v2-m3 \
|
||
--host 0.0.0.0 \
|
||
--disable-radix-cache \
|
||
--chunked-prefill-size -1 \
|
||
--attention-backend triton \
|
||
--is-embedding \
|
||
--port 30000
|
||
```
|
||
|
||
## Example Client Request
|
||
|
||
```python
|
||
import requests
|
||
|
||
url = "http://127.0.0.1:30000/v1/rerank"
|
||
|
||
payload = {
|
||
"model": "BAAI/bge-reranker-v2-m3",
|
||
"query": "what is panda?",
|
||
"documents": [
|
||
"hi",
|
||
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
|
||
]
|
||
}
|
||
|
||
response = requests.post(url, json=payload)
|
||
response_json = response.json()
|
||
|
||
for item in response_json:
|
||
print(f"Score: {item['score']:.2f} - Document: '{item['document']}'")
|
||
```
|
||
|
||
## Supported rerank models
|
||
|
||
| Model Family (Rerank) | Example HuggingFace Identifier | Chat Template | Description |
|
||
|------------------------------------------------|--------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|
|
||
| **BGE-Reranker (BgeRerankModel)** | `BAAI/bge-reranker-v2-m3` | N/A | Currently only support `attention-backend` `triton` and `torch_native`. high-performance cross-encoder reranker model from BAAI. Suitable for reranking search results based on semantic relevance. |
|