sglang.0.4.8.post1/sglang/docs/supported_models/rerank_models.md

50 lines
2.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Rerank Models
SGLang offers comprehensive support for rerank models by incorporating optimized serving frameworks with a flexible programming interface. This setup enables efficient processing of cross-encoder reranking tasks, improving the accuracy and relevance of search result ordering. SGLangs design ensures high throughput and low latency during reranker model deployment, making it ideal for semantic-based result refinement in large-scale retrieval systems.
```{important}
They are executed with `--is-embedding` and some may require `--trust-remote-code`
```
## Example Launch Command
```shell
python3 -m sglang.launch_server \
--model-path BAAI/bge-reranker-v2-m3 \
--host 0.0.0.0 \
--disable-radix-cache \
--chunked-prefill-size -1 \
--attention-backend triton \
--is-embedding \
--port 30000
```
## Example Client Request
```python
import requests
url = "http://127.0.0.1:30000/v1/rerank"
payload = {
"model": "BAAI/bge-reranker-v2-m3",
"query": "what is panda?",
"documents": [
"hi",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
]
}
response = requests.post(url, json=payload)
response_json = response.json()
for item in response_json:
print(f"Score: {item['score']:.2f} - Document: '{item['document']}'")
```
## Supported rerank models
| Model Family (Rerank) | Example HuggingFace Identifier | Chat Template | Description |
|------------------------------------------------|--------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|
| **BGE-Reranker (BgeRerankModel)** | `BAAI/bge-reranker-v2-m3` | N/A | Currently only support `attention-backend` `triton` and `torch_native`. high-performance cross-encoder reranker model from BAAI. Suitable for reranking search results based on semantic relevance. |