sglang_v0.5.2/pytorch_2.8.0/third_party/onnx/docs/TestCoverage-ml.md

7.5 KiB

Test Coverage Report (ONNX-ML Operators)

Outlines

Node Test Coverage

Summary

Node tests have covered 4/19 (21.05%, 0 generators excluded) common operators.

Node tests have covered 0/0 (N/A) experimental operators.

💚Covered Common Operators

ArrayFeatureExtractor

There are 1 test cases, listed as following:

arrayfeatureextractor
node = onnx.helper.make_node(
    "ArrayFeatureExtractor",
    inputs=["x", "y"],
    outputs=["z"],
    domain="ai.onnx.ml",
)

x = np.arange(12).reshape((3, 4)).astype(np.float32)
y = np.array([0, 1], dtype=np.int64)
z = np.array([[0, 4, 8], [1, 5, 9]], dtype=np.float32).T
expect(
    node,
    inputs=[x, y],
    outputs=[z],
    name="test_ai_onnx_ml_array_feature_extractor",
)

Binarizer

There are 1 test cases, listed as following:

binarizer
threshold = 1.0
node = onnx.helper.make_node(
    "Binarizer",
    inputs=["X"],
    outputs=["Y"],
    threshold=threshold,
    domain="ai.onnx.ml",
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = compute_binarizer(x, threshold)[0]

expect(node, inputs=[x], outputs=[y], name="test_ai_onnx_ml_binarizer")

LabelEncoder

There are 2 test cases, listed as following:

string_int_label_encoder
node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_strings=["a", "b", "c"],
    values_int64s=[0, 1, 2],
    default_int64=42,
)
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, 42, 2, 42]).astype(np.int64)
expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_string_int",
)

node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_strings=["a", "b", "c"],
    values_int64s=[0, 1, 2],
)
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, -1, 2, -1]).astype(np.int64)
expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_string_int_no_default",
)
tensor_based_label_encoder
tensor_keys = make_tensor(
    "keys_tensor", onnx.TensorProto.STRING, (3,), ["a", "b", "c"]
)
repeated_string_keys = ["a", "b", "c"]
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, 42, 2, 42]).astype(np.int16)

node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_tensor=tensor_keys,
    values_tensor=make_tensor(
        "values_tensor", onnx.TensorProto.INT16, (3,), [0, 1, 2]
    ),
    default_tensor=make_tensor(
        "default_tensor", onnx.TensorProto.INT16, (1,), [42]
    ),
)

expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_tensor_mapping",
)

node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_strings=repeated_string_keys,
    values_tensor=make_tensor(
        "values_tensor", onnx.TensorProto.INT16, (3,), [0, 1, 2]
    ),
    default_tensor=make_tensor(
        "default_tensor", onnx.TensorProto.INT16, (1,), [42]
    ),
)

expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_tensor_value_only_mapping",
)

TreeEnsemble

There are 2 test cases, listed as following:

tree_ensemble_set_membership
node = onnx.helper.make_node(
    "TreeEnsemble",
    ["X"],
    ["Y"],
    domain="ai.onnx.ml",
    n_targets=4,
    aggregate_function=1,
    membership_values=make_tensor(
        "membership_values",
        onnx.TensorProto.FLOAT,
        (8,),
        [1.2, 3.7, 8, 9, np.nan, 12, 7, np.nan],
    ),
    nodes_missing_value_tracks_true=None,
    nodes_hitrates=None,
    post_transform=0,
    tree_roots=[0],
    nodes_modes=make_tensor(
        "nodes_modes",
        onnx.TensorProto.UINT8,
        (3,),
        np.array([0, 6, 6], dtype=np.uint8),
    ),
    nodes_featureids=[0, 0, 0],
    nodes_splits=make_tensor(
        "nodes_splits",
        onnx.TensorProto.FLOAT,
        (3,),
        np.array([11, 232344.0, np.nan], dtype=np.float32),
    ),
    nodes_trueleafs=[0, 1, 1],
    nodes_truenodeids=[1, 0, 1],
    nodes_falseleafs=[1, 0, 1],
    nodes_falsenodeids=[2, 2, 3],
    leaf_targetids=[0, 1, 2, 3],
    leaf_weights=make_tensor(
        "leaf_weights", onnx.TensorProto.FLOAT, (4,), [1, 10, 1000, 100]
    ),
)

x = np.array([1.2, 3.4, -0.12, np.nan, 12, 7], np.float32).reshape(-1, 1)
expected = np.array(
    [
        [1, 0, 0, 0],
        [0, 0, 0, 100],
        [0, 0, 0, 100],
        [0, 0, 1000, 0],
        [0, 0, 1000, 0],
        [0, 10, 0, 0],
    ],
    dtype=np.float32,
)
expect(
    node,
    inputs=[x],
    outputs=[expected],
    name="test_ai_onnx_ml_tree_ensemble_set_membership",
)
tree_ensemble_single_tree
node = onnx.helper.make_node(
    "TreeEnsemble",
    ["X"],
    ["Y"],
    domain="ai.onnx.ml",
    n_targets=2,
    membership_values=None,
    nodes_missing_value_tracks_true=None,
    nodes_hitrates=None,
    aggregate_function=1,
    post_transform=0,
    tree_roots=[0],
    nodes_modes=make_tensor(
        "nodes_modes",
        onnx.TensorProto.UINT8,
        (3,),
        np.array([0, 0, 0], dtype=np.uint8),
    ),
    nodes_featureids=[0, 0, 0],
    nodes_splits=make_tensor(
        "nodes_splits",
        onnx.TensorProto.DOUBLE,
        (3,),
        np.array([3.14, 1.2, 4.2], dtype=np.float64),
    ),
    nodes_truenodeids=[1, 0, 1],
    nodes_trueleafs=[0, 1, 1],
    nodes_falsenodeids=[2, 2, 3],
    nodes_falseleafs=[0, 1, 1],
    leaf_targetids=[0, 1, 0, 1],
    leaf_weights=make_tensor(
        "leaf_weights",
        onnx.TensorProto.DOUBLE,
        (4,),
        np.array([5.23, 12.12, -12.23, 7.21], dtype=np.float64),
    ),
)

x = np.array([1.2, 3.4, -0.12, 1.66, 4.14, 1.77], np.float64).reshape(3, 2)
y = np.array([[5.23, 0], [5.23, 0], [0, 12.12]], dtype=np.float64)
expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_tree_ensemble_single_tree",
)

💔No Cover Common Operators

CastMap (call for test cases)

CategoryMapper (call for test cases)

DictVectorizer (call for test cases)

FeatureVectorizer (call for test cases)

Imputer (call for test cases)

LinearClassifier (call for test cases)

LinearRegressor (call for test cases)

Normalizer (call for test cases)

OneHotEncoder (call for test cases)

SVMClassifier (call for test cases)

SVMRegressor (call for test cases)

Scaler (call for test cases)

TreeEnsembleClassifier (call for test cases)

TreeEnsembleRegressor (call for test cases)

ZipMap (call for test cases)


💚Covered Experimental Operators


💔No Cover Experimental Operators


Model Test Coverage

No model tests present for selected domain

Overall Test Coverage

To be filled.