inference/sglang/docs/backend/sampling_params.md

12 KiB

Sampling Parameters

This doc describes the sampling parameters of the SGLang Runtime. It is the low-level endpoint of the runtime.

If you want a high-level endpoint that can automatically handle chat templates, consider using the OpenAI Compatible API.

/generate Endpoint

The /generate endpoint accepts the following parameters in JSON format. For in detail usage see the native api doc.

  • text: Optional[Union[List[str], str]] = None The input prompt. Can be a single prompt or a batch of prompts.
  • input_ids: Optional[Union[List[List[int]], List[int]]] = None Alternative to text. Specify the input as token IDs instead of text.
  • sampling_params: Optional[Union[List[Dict], Dict]] = None The sampling parameters as described in the sections below.
  • return_logprob: Optional[Union[List[bool], bool]] = None Whether to return log probabilities for tokens.
  • logprob_start_len: Optional[Union[List[int], int]] = None If returning log probabilities, specifies the start position in the prompt. Default is "-1" which returns logprobs only for output tokens.
  • top_logprobs_num: Optional[Union[List[int], int]] = None If returning log probabilities, specifies the number of top logprobs to return at each position.
  • stream: bool = False Whether to stream the output.
  • lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None Path to LoRA weights.
  • custom_logit_processor: Optional[Union[List[Optional[str]], str]] = None Custom logit processor for advanced sampling control. For usage see below.
  • return_hidden_states: bool = False Whether to return hidden states of the model. Note that each time it changes, the cuda graph will be recaptured, which might lead to a performance hit. See the examples for more information.

Sampling params

Core Parameters

  • max_new_tokens: int = 128 The maximum output length measured in tokens.
  • stop: Optional[Union[str, List[str]]] = None One or multiple stop words. Generation will stop if one of these words is sampled.
  • stop_token_ids: Optional[List[int]] = None Provide stop words in form of token ids. Generation will stop if one of these token ids is sampled.
  • temperature: float = 1.0 Temperature when sampling the next token. temperature = 0 corresponds to greedy sampling, higher temperature leads to more diversity.
  • top_p: float = 1.0 Top-p selects tokens from the smallest sorted set whose cumulative probability exceeds top_p. When top_p = 1, this reduces to unrestricted sampling from all tokens.
  • top_k: int = -1 Top-k randomly selects from the k highest-probability tokens.
  • min_p: float = 0.0 Min-p samples from tokens with probability larger than min_p * highest_token_probability.

Penalizers

  • frequency_penalty: float = 0.0: Penalizes tokens based on their frequency in generation so far. Must be between -2 and 2 where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of penalization grows linearly with each appearance of a token.
  • presence_penalty: float = 0.0: Penalizes tokens if they appeared in the generation so far. Must be between -2 and 2 where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of the penalization is constant if a token occured.
  • repetition_penalty: float = 0.0: Penalizes tokens if they appeared in prompt or generation so far. Must be between 0 and 2 where numbers smaller than 1 encourage repeatment of tokens and numbers larger than 1 encourages sampling of new tokens. The penalization scales multiplicatively.
  • min_new_tokens: int = 0: Forces the model to generate at least min_new_tokens until a stop word or EOS token is sampled. Note that this might lead to unintended behavior for example if the distribution is highly skewed towards these tokens.

Constrained decoding

Please refer to our dedicated guide on constrained decoding for the following parameters.

  • json_schema: Optional[str] = None: JSON schema for structured outputs.
  • regex: Optional[str] = None: Regex for structured outputs.
  • ebnf: Optional[str] = None: EBNF for structured outputs.

Other options

  • n: int = 1: Specifies the number of output sequences to generate per request. (Generating multiple outputs in one request (n > 1) is discouraged; repeat the same prompts for several times offer better control and efficiency.)
  • spaces_between_special_tokens: bool = True: Whether or not to add spaces between special tokens during detokenization.
  • no_stop_trim: bool = False: Don't trim stop words or EOS token from the generated text.
  • ignore_eos: bool = False: Don't stop generation when EOS token is sampled.
  • skip_special_tokens: bool = True: Remove special tokens during decoding.
  • custom_params: Optional[List[Optional[Dict[str, Any]]]] = None: Used when employing CustomLogitProcessor. For usage see below.

Examples

Normal

Launch a server:

python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000

Send a request:

import requests

response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "The capital of France is",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 32,
        },
    },
)
print(response.json())

Detailed example in send request.

Streaming

Send a request and stream the output:

import requests, json

response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "The capital of France is",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 32,
        },
        "stream": True,
    },
    stream=True,
)

prev = 0
for chunk in response.iter_lines(decode_unicode=False):
    chunk = chunk.decode("utf-8")
    if chunk and chunk.startswith("data:"):
        if chunk == "data: [DONE]":
            break
        data = json.loads(chunk[5:].strip("\n"))
        output = data["text"].strip()
        print(output[prev:], end="", flush=True)
        prev = len(output)
print("")

Detailed example in openai compatible api.

Multi modal

Launch a server:

python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --chat-template chatml-llava

Download an image:

curl -o example_image.png -L https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true

Send a request:

import requests

response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
                "<|im_start|>user\n<image>\nDescribe this image in a very short sentence.<|im_end|>\n"
                "<|im_start|>assistant\n",
        "image_data": "example_image.png",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 32,
        },
    },
)
print(response.json())

The image_data can be a file name, a URL, or a base64 encoded string. See also python/sglang/srt/utils.py:load_image.

Streaming is supported in a similar manner as above.

Detailed example in openai api vision.

Structured Outputs (JSON, Regex, EBNF)

You can specify a JSON schema, regular expression or EBNF to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (json_schema, regex, or ebnf) can be specified for a request.

SGLang supports two grammar backends:

  • Outlines (default): Supports JSON schema and regular expression constraints.
  • XGrammar: Supports JSON schema, regular expression, and EBNF constraints.

Initialize the XGrammar backend using --grammar-backend xgrammar flag

python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: outlines)
import json
import requests

json_schema = json.dumps({
    "type": "object",
    "properties": {
        "name": {"type": "string", "pattern": "^[\\w]+$"},
        "population": {"type": "integer"},
    },
    "required": ["name", "population"],
})

# JSON (works with both Outlines and XGrammar)
response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "Here is the information of the capital of France in the JSON format.\n",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 64,
            "json_schema": json_schema,
        },
    },
)
print(response.json())

# Regular expression (Outlines backend only)
response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "Paris is the capital of",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 64,
            "regex": "(France|England)",
        },
    },
)
print(response.json())

# EBNF (XGrammar backend only)
response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "Write a greeting.",
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": 64,
            "ebnf": 'root ::= "Hello" | "Hi" | "Hey"',
        },
    },
)
print(response.json())

Detailed example in structured outputs.

Custom Logit Processor

Launch a server with --enable-custom-logit-processor flag on.

python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --enable-custom-logit-processor

Define a custom logit processor that will always sample a specific token id.

from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor

class DeterministicLogitProcessor(CustomLogitProcessor):
    """A dummy logit processor that changes the logits to always
    sample the given token id.
    """

    def __call__(self, logits, custom_param_list):
        # Check that the number of logits matches the number of custom parameters
        assert logits.shape[0] == len(custom_param_list)
        key = "token_id"

        for i, param_dict in enumerate(custom_param_list):
            # Mask all other tokens
            logits[i, :] = -float("inf")
            # Assign highest probability to the specified token
            logits[i, param_dict[key]] = 0.0
        return logits

Send a request

import requests

response = requests.post(
    "http://localhost:30000/generate",
    json={
        "text": "The capital of France is",
        "custom_logit_processor": DeterministicLogitProcessor().to_str(),
        "sampling_params": {
            "temperature": 0.0,
            "max_new_tokens": 32,
            "custom_params": {"token_id": 5},
        },
    },
)
print(response.json())